2006-02-13

IEA Advanced Motor Fuels

Annual Report 2005

Contents

Page

1.		ance of the IEA Advanced Motor Fuels Programme in a Time ssure on World Transportation Energy Supplies and Price	. 6		
2.	How to Join the AMF Programme?				
3.	The In	plementing Agreement and the AMF Programme	. 10		
4.	Runnii	ng Projects/Annexes	. 17		
5.	Progre	ss Reports by the Operating Agents	. 19		
	5.1	Annex XXVIII TEC: Information Service & AMF Website	. 19		
	5.2	Annex XXIX	. 21		
	5.3	VTT: Heavy-Duty Urban Vehicles Annex XXX	. 23		
	5.4	ATFCan: Animal Fat in Biodiesel Annex XXXI	. 26		
	5.5	Atrax: Fischer-Tropsch Fuels Annex XXXII	. 28		
	5.6	Atrax: Future Fuels for Road Transport Annex XXXIII AFHB: Particle Emissions of 2-S Scooters	. 30		
Арј	pendix	l Completed Projects/Annexes	. 33		
App	pendix 2	2 Workshops	. 48		
App	pendix 3	3 List of reports	. 50		
App	pendix 4	4 AMF ExCo Meetings	. 62		
Арј	pendix :	 Executive Committee on Advanced Motor Fuels A. Delegates and Alternates B. Representatives of Operating Agents C. Secretariat 	. 68		

Updated information on IEA/AMF is found on

a) <u>www.iea-amf.vtt.fi</u>

b) <u>www.iea.org/impag</u>

February 2006

IEA Advanced Motor Fuels

Annual Report 2005

The IEA Committee for Research and Development (CERT) has recommended that an Annual Report shall be submitted by each of the IEA Agreements on Research, Development and Demonstration Co-operation.

This document contains the Annual Report 2005 of the Executive Committee of the IEA Advanced Motor Fuels Agreement.

The contributions from the Operating Agents to this report are gratefully acknowledged.

On behalf of the Executive Committee

Steve Goguen Chairman Claës Pilo Secretary

Preface

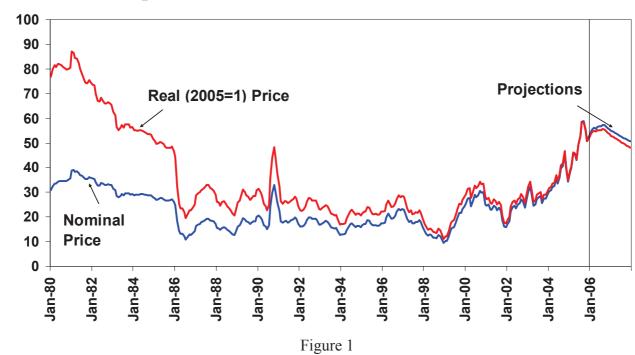
In 2005 the world faced even more pressure on oil supplies and prices. Margins between production and demand were very slim, and the result was rising prices for energy, reaching a critical point in the late summer and fall. The situation in North America was particularly exasperated by the incidents of several devastating storms. Noteworthy of these was hurricane Katrina, which struck a crippling blow to the concentration of oil refinery facilities in the vicinity of New Orleans and to a lesser extent along the Texas Gulf coast. Even before the storm, there was already building a greater attention to the alternatives such as biomass derived fuels and hydrogen. Ethanol and biodiesel (methyl esters) fuel sales and production are ramping up at a rapid pace around the world. Meanwhile, others are beginning to develop means of producing high-grade fuels from biomass by way of flexible, integrated refineries capable of using biomass and petroleum in the same facility. Once fully developed, these concepts will lead to a much greater use of biofuels as part of the total energy resource.

With all of these developments as a backdrop, the Executive Committee of the Implementing Agreement on Advanced Motor Fuels (AMF) is well positioned to help contribute to solutions to the difficult and perplexing issues of motor fuels supply and utilization. The current 5-year strategic plan for the Implementing Agreement is now one year old, and the Committee is staying on track with the goals and objectives as stated in the plan. The vision of the AMF is:

• To contribute to the growing market penetration of advanced motor fuels and the widespread deployment of sustainable technologies for transport. Improved emissions and improved energy efficiency and security are the goals of this vision. To achieve its vision the AMF's aim is to become a leading international player in the promotion of international collaboration in R&D, deployment and dissemination of clean, energy-efficient and sustainable fuels and related vehicle technology. The AMF will seek annex proposals that are consistent with goals and objectives of the strategic plan.

The 31st meeting of the Executive Committee of AMF was held in Prague, Czech Republic, in November 2005. The Czech Republic had hosted the meeting because they were expecting to be admitted into the Agreement. Meetings were held at the Ministry of Industry and Trade in Prague, and the attendees were treated to a tour of the Škoda production plant in Mladá Boleslav. In informal sessions the Committee heard progress reports on eight current annexes and proposals for two new annexes and the continuation of another existing annex. In the executive sessions the Committee officially closed three of the annexes and took decisions to provisionally start the two new annexes that were proposed. Both proposing parties would have to interact with the Committee further by e-mail and fax in order to work out the details.

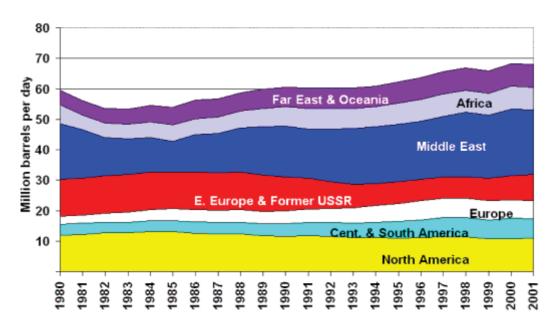
The Committee officially invited the Czech Republic to join the Agreement, and the Czech representatives indicated that they would accept and would complete the paperwork in 2006. It was also decided that the Committee would continue to invite the participation of Brazil and China since they have been interested and/or Observers in the past. Denmark was invited to rejoin the Committee since they had experienced a short lapse in membership. Proposed locations for the ExCo 32 were discussed and China and the United States are under consideration for hosting the next meeting in the early fall of 2006.


The chairman wishes to thank all of the participants for their efforts throughout the year 2005. Special thanks are due to Dr. Nils-Olof Nylund of Finland and Mr. Shunichi Tokishita of NEDO in Japan for their efforts as Vice Chairmen and to Dr. Claës Pilo for his work as secretary for the Committee.

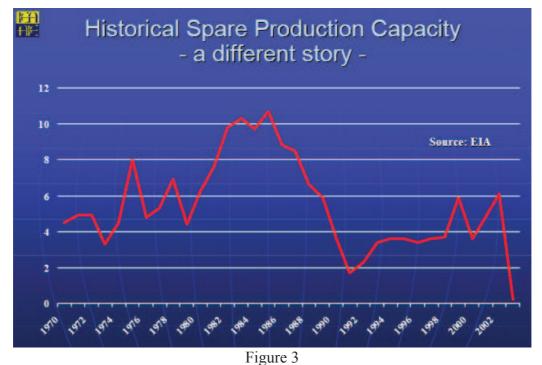
Steve Goguen Chairman of the Executive Committee Implementing Agreement on Advanced Motor Fuels

1. Relevance of the IEA Advanced Motor Fuels Programme in a Time of Pressure on World Transportation Energy Supplies and Price

The world of transportation fuels is changing rapidly, and nothing proves this point more clearly than the three figures below. The first shows the nominal and real price of crude oil from 1980 to the present. Nominal price is the price actually paid at the time of consumption, i.e., not adjusted for inflation. The real price is adjusted for inflation in constant 2005 US dollars. So, while the nominal price level is now at it's highest ever, the real price is not as high as in the early 1980s. The price is rising dramatically in the last few months because of smaller margins between crude oil production and demand.


The second figure below shows the world production of crude oil per day from the various producing regions. While production has grown from a low point in the 1980s of about 55 million barrels per day to the high point today of about 68 million barrels per day, the growth rate is much slower than the growth in demand. Demand is driven by (1) an annual growth in vehicle miles travelled of about 2% per year worldwide and (2) the burgeoning economies of China and India and the associated increased in personal mobility. So, the margin between demand and supply is dwindling, as illustrated in the third figure. This figure shows the spare production capacity in the OPEC countries in millions of barrels per day, and it clearly shows the spare capacity dwindling to near zero. Thus, any interruption in production for any reason can wreak havoc on the market and prices.

Dollars per Barre


Imported Crude Oil Prices: Nominal and Real

Source: US Energy Information Agency

Regional Crude Oil Production, 1980-2001

Figure 2 Source: US Energy Information Agency

From a presentation by William C. Ramsay, Deputy Executive Director, IEA http://www.iea.org/dbtw-wpd/Textbase/work/2004/cambodia/bj_session1.1and%202.pdf

Meanwhile, the pinch on transportation fuels is even more exacerbated with the increasingly stringent vehicle emissions requirements being enforced throughout the world. Clearly this is a good time to be in the business of alternative and advanced motor fuels, and the IEA/AMF is positioning itself to help usher in a new age of success in deploying diverse fuels that will meet the needs of societies.

Among the candidates for displacing large amounts of petroleum hydrogen continues to garner most of the attention and funding around the world, but the biggest percentage gains in growth in production and usage are being enjoyed by the biofuel industry. Much of this growth is happening in ethanol (for spark ignition engines) and methyl esters (for diesel engines) where low level blends of each are easily tolerated by existing engines. Growth rates for both are impressive, but they still displace only small percentages of petroleum, 1% or so.

On the near horizon is the development of flexible biorefineries that can process a variety of feedstocks of biomass along with petroleum, into highly refined fuel products with no loss of quality or specification. The Choren process in Germany and the NexBTL process in Finland are examples of such technologies. They are just beginning to come to the fore in the news and in technical discussions, but their future looks very bright. This will open up the biofuels market to include a much broader array of biomass feedstocks and a much greater use of biofuels in general.

Natural gas continues to be a major force in the alternative fuels market. Some forecast that its use will continue to grow through 2020. In fact, Europe has set a target of 10 % share by natural gas in transportation by 2020. Furthermore, the use of natural gas by way of Fischer-Tropsch synthetic fuels will increase over the next decade.

The U.S. and others are aggressively pursuing programs to develop hydrogen powered fuel cells and hydrogen resources. A hydrogen distribution infrastructure would be developed in coordination with the growth of hydrogen-powered vehicles. The main drivers for a hydrogen program are:

- Energy security, independence from petroleum
- CO₂ and criteria emissions reductions
- Economic competitiveness

The goal of most of the hydrogen programs around the world is to deploy the technologies in significant numbers starting in about 2020.

In the meantime, a number of fuel-efficient technologies are already being deployed in the form of hybrid vehicles. These vehicles provide much improved fuel economy in city driving and, thus, help reduce the demand for petroleum fuels. The numbers of different hybrid vehicles available for purchase as well as the numbers of hybrids sold are increasing rapidly. This growth is not limited to the light-duty vehicle market but also includes hybrid city buses, which are being purchased in large numbers.

In this time of near crisis in petroleum supply and demand, the IEA/AMF continues to serve the member countries by providing a forum for the exchange of information and ideas. Cooperative work pursued by the participants in annexes help government and industries in their respective countries make the best decisions on future fuels. With so many challenges on the horizon, staying abreast of the worldwide developments is imperative, and this partnership helps to facilitate those efforts.

2. How to Join the AMF Programme?

A number of IEA Member countries have found it efficient and cost effective to co-operate on research, demonstration and exchange of information regarding Advanced Motor Fuels (AMF) to develop new and improved technologies and facilitate their introduction into the market.

This collaboration programme takes the form of an *Implementing Agreement* under the legal guidance of the International Energy Agency (IEA). All countries concerned about energy and environment in the transport sector, whether or not they are members of the IEA, are welcome to join this international effort and share this experience.

We are facing a diversification of energies and vehicle technologies in the transport sector. Working together makes it easier to define the proper pathways for the future.

The participating governments designate a government organisation or a private entity (for example from industry) as their representative to the Programme.

The Advanced Motor Fuel collaboration programme was launched with 5 participating countries in 1984. Today 11 countries are involved in the Programme and form a very interesting and efficient network.

France joined the Advanced Motor Fuels collaboration programme in 2000, Denmark in 2001, Spain in 2002, and Switzerland in 2004. The Czech Republic announced in 2005 that they will join in 2006.

The following countries and designated bodies are active today:

Canada	Department of Natural Resources Canada (NRC)
Denmark	Technical University of Denmark (DTU)
Finland	Technical Research Centre of Finland (VTT)
France	Agence de l'Environnement et de la Maîtrise de l'Energie
	(ADEME)
Italy	AgipPetroli Centro Ricerche EURON
Japan	New Energy and Industrial Technology Development Organization
	(NEDO)
	Organization for the Promotion of Low-Emission Vehicles (LEVO)
Spain	Institute for the Diversification and Saving of Energy (IDAE)
Sweden	Swedish Energy Agency (STEM)
Switzerland	University of Applied Sciences Bern (AFHB)
UK	Department for Transport (DfT)
USA	US Department of Energy (DOE)

Those interested to participate as Observers at the meetings of the AMF Executive Committee (see Para. 3.7) with the intention of joining the programme are welcome to contact the IEA/AMF secretary Claës Pilo, SDAB Transport & Environment, Karlavägen 93, SE-115 22 Stockholm, Tel +46 8 15 11 90, Fax +46 8 15 11 91, E-mail <u>pilo.sdab@swipnet.se</u>

3. The Implementing Agreement and the AMF Programme

(Status February 2006)

3.1 Strategic Plans

A first strategic plan was prepared in 1995 and a second "Strategic Plan for 1999-2004" in 1998. A new "Strategic Plan 2005-2009" (see IEA/AMF website <u>www.iea-amf.vtt.fi</u>) was approved by the IEA Committee on Energy Research and Technology (CERT) in June 2004. (For details see Chapter 3.9).

3.2 Change of the Name

In 1984 the "Implementing Agreement for a Programme of Research, Development and Demonstration on *Alcohol and Alcohol Blends as Motor Fuels (AMF)*" was signed in Paris. During the first period 1984-90 the Agreement focused on alcohols (such as methanol, ethanol, and higher alcohols) as well as on related oxygenated hydrocarbons (such as MTBE, and ETBE).

In 1990 it was broadened to address also other alternative motor fuels and was renamed "Implementing Agreement for a Programme of Research, Development and Demonstration on *Alternative Motor Fuels (AMF)*".

Following the proposals in the "Strategic Plan for 1999-2004" the name was changed in October 1998 to "Implementing Agreement for a Programme on Research and Demonstration of *Advanced Motor Fuels (AMF)*." This was done to make provisions to include reformulated hydrocarbon fuels in the scope of AMF.

3.3 Objectives

Every new fuel has impacts on the whole fuel chain, on feedstock, fuel processing, fuel distribution and end-use including environmental impacts and possible vehicle modifications. It is therefore necessary to have a good understanding of the whole complex system when choosing future fuel options.

The objective of the Advanced Motor Fuels collaboration programme is to deal with such aspects by co-operation on research and demonstration, by exchange of information and creation of a network of experts in the field of advanced motor fuels. Participants are concerned about emissions, energy efficiency, field trials as well as system aspects (such as life-cycle analysis on energy use and greenhouse gas emissions). The AMF collaboration programme forms a suitable platform for co-ordinated efforts on an international level to evaluate new fuel options where experts in Advanced Motor Fuels share experiences and results of their endeavours.

The new "Strategic Plan for 2005-2009" sets the emphasis on:

Information & Membership

- Info service & database
- Country-specific updates
- Website for AMF activities
- Promote membership
- Share info with developing countries
- Provide reliable info to policy & decision makers
- Promote awareness of the need for sustainable transport

RDD&D

- Define R&D priorities
- Encourage collaborative actions (member countries and related IAs)
- Seek co-operation with other programs on new fuels and new vehicle technology (EU, World Bank, etc)
- Seek alliances with industry

Market Facilitation

- International harmonization of fuel specifications and standards
- International harmonization of test procedures (for vehicles using new types of fuels & propulsion systems)

Participants in the Programme welcome the submission of proposals for exploratory projects on fuels and emission control in areas such as road transport, other transport modes, off-road vehicles and other working machines, lubricants and standardisation of fuels, components and tests.

3.4 Definition of Advanced Motor Fuels

Fuels included under the definition of Advanced Motor Fuels are fuels that fulfil one or more of the following criteria:

- Low toxic emissions
- Improved life cycle efficiency
- Reduced greenhouse gas emissions
- Renewable energy sources
- Fuels for new propulsion systems

In the new "Strategic Plan 2005-2009" two new, partly overlapping criteria have been added:

- Sustainability in transportation
- Security of supply

Advanced motor fuels studied in the framework of the AMF Programme are:

- Alcohols (ethanol, methanol), ethers (DME, ETBE, MTBE, etc), esters (RME, etc), gaseous fuels (natural gas, biogas, hydrogen, LPG, etc)
- Reformulated gasoline and diesel fuels, including oxygenated versions
- Synthetic fuels, such as Fischer-Tropsch fuels
- Fuels for new types of engines and fuel cells

3.5 Participating Countries

Presently, eleven countries participate in the IEA collaboration on advanced motor fuels:

Canada, Denmark, Finland, France, Italy, Japan, Spain, Sweden, Switzerland, United Kingdom, and United States.

Each participating country has designated one Contracting Party to sign the Implementing Agreement (IA), except Japan that has designated two Contracting Parties (NEDO and LEVO).

One Delegate and one Alternate represent each Contracting Party in the Executive Committee.

3.6 Executive Committee and Secretariat

The practical work within the IA is co-ordinated by an Executive Committee (ExCo). The ExCo of the IA on AMF is an active and authoritative group of persons, representing independent organisations. Thus, it is possible to supply governments participating in this IA with the results of studies that are objective and not coloured by industrial or political interests.

The Executive Committee meets each 9-12 months in different participating countries, reviews the progress and results of Annexes, approves new Annexes as proposed by participants, and determines other specific activities.

An IEA/AMF Secretariat assists the Executive Committee in planning meetings, initiating new Annexes, assisting Operating Agents, providing information to the IEA Secretariat, disseminating information and responding to member's inquiries.

3.7 End-of-Term Report 1999-2004

An End-of-Term Report for the period 1999-2004 (see IEA/AMF website <u>www.iea-amf.vtt.fi</u>) was presented to and approved by the IEA End-Use Working Party (EUWP) in March 2004.

The report summarized the **financial commitments** since start:

Period	Total budget (1 000 \$)	<i>Project</i> <i>budget</i> (1 000 \$)
1984-1992(4 proj)1993-1998(7 proj)1999-2004(12 proj)Running projects(6 proj)	1 193 1 379 3 018 1 252	298 197 252 209
Total	6 842	236

The **involvement of industry** during the period 1999-2004 was summarized as follows:

٠	Chemical industry	Akzo-Nobel
٠	Catalyst industry	Haldor Topsöe, Ecocat
٠	Energy industry	Amoco, Fortum, Statoil
٠	Vehicle industry	Ford, Honda R&D, PSA, Renault, Volvo Trucks
٠	Engine industry	Sisu Diesel

Some **examples of added value** were given in the End-of-Term Report:

- Getting access to: Analysis, R&D Results, Market Experiences, R&D Teams, Lab Equipment, Fuels, Vehicles
- Developing international fuel standards
- Facilitating future market introduction
- Creating international contacts: Government, Fuel & Vehicle Industry, Research

3.8 Projects/Annexes

Altogether, 27 collaborative projects (Annexes) have been completed (see Table 3 and 4) since the programme started in 1984 and 5 others are presently running (see Table 1 and 2).

In the End-of-Term Report are summarized the different areas covered during the period 1999-2004:

Annexes

• General information	IX, XXIV, XXVIII
• New fuels	XIV, XVIII, XIX, XX, XXV, XXXII
• Emissions – particles	XIII, XXII, XXV, XXXIII
• Health effects	XXX
Test procedures	XVII, XXIX
Lubricants	XVI
 Non-road engines 	XXV
Standardization	XXVII
Implementation	XV, XXI
• Operational experience	XXVI

3.9 Strategic Plan 2005-2009

A Strategic Plan for the period 2005-2009 (is found on the IEA/AMF website <u>www.iea-amf.vtt.fi</u>) was approved by the IEA Committee on Energy Research and Technology (CERT) in June 2004.

Some important <u>challenges in the transport sector</u> are summarized in the plan as a background:

- Number of vehicles increase rapidly around the world
- Energy conservation, security of supply and sustainability become increasingly important
- Transport related CO2 emissions increase in contrast to other sectors
- Technology leaps and major changes in consumer behaviour are needed to reduce CO2 emissions substantially
- The choice of technical options is widening. How pick the best alternatives?

The **AMF Objectives** are described in Chapter 3.3.

The **<u>AMF Mission</u>** is defined as follows:

- To become a leading international player in RDD&D of clean, energy efficient and sustainable fuels and related vehicle technology
- To remain a fuel neutral platform for RDD&D and a respected clearing-house for information

AMF should have **main focus** on:

• Forming policies and strategies to facilitate the market introduction of advanced motor fuels and related vehicle technology

Examples of **future projects** are also mentioned:

- Cost-effectiveness of various ways to reduce CO2 emissions from transport
- Production capacity of various fuels
- Fuels and emissions Marine transport
- Concerted demonstration activities
- Joint efforts for market deployment of clean fuels and clean vehicles
- Technology transfer to developing markets

3.10 Recent Initiatives

During its last meetings ExCo 29 in January 2004 in Linköping, Sweden, ExCo 30 in October 2004 in Sao Paulo, Brazil, and ExCo 31 in November 2005 in Prague, Czech Republic, the Executive Committee took a number of initiatives.

- Observers from Brazil and Switzerland were present at ExCo 29
- Switzerland joined AMF in 2004
- ExCo 30 took place in Brazil
- Observers from Brazil and the Czech Republic were present during ExCo30
- ExCo 31 took place in the Czech Republic
- The Czech Republic announced during ExCo 31 in Prague that they will join in 2006
- An End-of-Term Report 1999-2004 was adopted
- A new Strategic Plan 2005-2009 was adopted
- 8 Annexes were closed
- 6 new Annexes were started
- A new Annex for "Information Service & AMF Website" was started common for all Contracting Parties and funded through the AMF Fund
- Decisions were taken to use the AMF Fund for a number of specific purposes incl. support to the Windsor Workshop 2004.
- The new electronic newsletter AMFI was published as four issues in 2005. Each newsletter includes a special article on a highly topical matter, e.g. biofuels, CTL,

NO₂ emissions etc. The newsletter is distributed to a wide audience: Delegates, Alternates, Operating Agents, governmental representatives, industry, other Implementing Agreements etc.

• In its last ExCo 31 meeting in Prague the Committee decided to produce an "Outlook Report" on projections for transportation energy, vehicle technology and advanced/alternative fuels within the AMFI information system in 2006.

3.11 IEA/AMF on Internet

• As a part of the new Information System, Annex XXVIII, the AMF website was completely reworked in 2005. Public reports are now easily accessible. For the Delegates, a password protected section including e.g. ExCo documentation is provided.

Updated information on IEA/AMF is found on:

www.iea-amf.vtt.fi and www.iea.org/impag

4. RUNNING PROJECTS/ANNEXES

(Status February 2006)

Table 1. Running Projects/Annexes

The following five projects/annexes are presently running.

Annex	Title	Run time	Operating Agent	Participating Countries
Annex XXVIII	Information Service & AMF Website	2004	TEC (FIN)	11
Annex XXIX	Heavy-Duty Urban Vehicles	2004 - 2006	VTT (FIN)	4
Annex XXXI	Fischer-Tropsch Fuels	2004 - 2006	Atrax (S)	3
Annex XXXII	Annex XXXII Future Fuels for Road Transport		Atrax (S)	3-4
Annex XXXIII	Particle Emissions of 2-S Scooters	2004 - 2006	AFHB (CH)	4-6

Table 2. Running Projects/Annexes

Participation and financial commitments are shown in the following table.

	Participating Countries and their Contributions											
Annex	Œ	denot	es the	Opera	ating A	gent.	Am	ount	s are g	given i	n 1 00	00€.
	CDN	СН	DK	ES	FIN	FR	Ι	J	S	UK	US	Total
XXVIII Information Service & AMF Website	X	X	X	X	Œ X	X	X	X	X	X	X	20
XXIX Heavy-Duty Urban Vehicles	56				Œ 140	40					152	388
XXXI Fischer-Tropsch Fuels			40		30				Œ		60	130
XXXII Future Fuels for Road Transport							?	?	Œ		?	60
XXXIII Particle Emissions of 2-S Scooters	0	Œ 10	0		0	0	0					10
TOTAL												608

5. Progress Reports by the Operating Agents

(Status February 2006)

5.1 Annex XXVIII Information Service & AMF Website

Operating Agent	TEC TransEnergy Consulting Ltd, Finland			
Decision to start	January 2004 (ExCo 29)			
Project Duration	Continuous			
Participants	All countries (11 countries)			
Total Budget	Annual budget \notin 20 000 (\notin 36 000 in 2006) Paid by the AMF Fund			
Project Leadership	Ms. Päivi Aakko TEC TransEnergy Consulting Ltd Teknikantie 14 FIN – 02150 Espoo Phone: +358 40 505 57 50 Fax: +358 9 2517 2361 E-mail: paivi.aakko@teconsulting.fi			

Background

AMF has been running an Information Service called IEA AMF/AFIS (Automotive Fuels Information Service) under two previous Annexes, Annex IX and Annex XXIV. Annex IX produced, among other things, five volumes of the "Automotive fuels survey" for AMF. In 2000-2004 Annex XXIV produced three yearly Newsletters on the subject of automotive fuels and related issues. Innas BV of Holland handled both Annexes. Since 1999, VTT Processes (Finland) has been maintaining a website for AMF.

AFIS was replaced by a new information system, AMFI (Advanced Motor Fuels Information, Annex XXVIII) in 2004. AMFI now combines an electronic Newsletter service and maintaining the AMF website.

Objectives

Sharing and providing information are very important elements in IEA cooperation. The new information system AMFI makes use of electronic communication. AMFI comprises the production of four yearly electronic Newsletters and the maintenance of the AMF website.

AMFI/Annex XXVIII is a low budget Annex, and all participants of the AMF Agreement share its costs. AMFI/Annex XXVIII provides an easy access platform for those parties interested to joint the cooperation of the Advanced Motor Fuels Agreement.

Deliverables

AMFI provides four yearly electronic Newsletters describing developments in transportation fuels, vehicles and energy and environmental issues in general. So far, five issues have been distributed, one in October 2004 and four issues in 2005. Each issue covers a list of fixed themes: Natural gas and LPG, ethanol, bioesters, synfuels and sunfuels, other advanced fuels (hydrogen, DME etc.). In addition, each issue focused on one particular theme with a special article. The following focus themes were discussed in special articles:

- Preparing for heavy-duty Euro 4/5 emission regulation
- Biofuels policy survey Europe
- Nitrogen dioxide dilemma
- Coal to liquids CTL boom in sight
- Engines and fuels go hand in hand into the future

The Newsletter can bee freely downloaded on the AMF website.

The AMF website serves both the general public interested in transportation fuel related issues and also the Members of the Advanced Motor Fuels Implementing Agreement. For the Members, a special password protected area is provided.

Future plans

In 2006, an "Outlook Report" on projections for transportation energy, vehicle technology and advanced/alternative fuels will be prepared. This report replaces the special articles of AMFI Newsletter in 2006. In addition, three issues of AMFI Newsletter will be distributed (four issues in 2005, to lower the overall costs of the AMFI Service in 2006).

5.2 Annex XXIX Evaluation of Duty Cycles for Heavy-Duty Urban Vehicles

Operating Agent	VTT Processes, Finland			
Assistants	West Virginia University (WVU), USA Environment Canada, Canada			
Decision to start	January 2004 (ExCo 29)			
Project Duration	2004 – 2006 (2,5 years)			
Participants	CDN, FIN, FR, and USA (4 count	ries)		
Total Budget	€ 388 000			
Project Leadership	Dr. Nils-Olof Nylund VTT Processes P.O. Box 1601 FIN – 02044 VTT Phone: +358 400 703 715 Fax: +358 20 722 7048 E-mail: nils-olof.nylund@vtf West Virginia University: Environment Canada: North American Liaison Officer :	Nigel.Clark@mail.wvu.edu Greg.Rideout@ec.gc.ca		

Background

Standardized emission certification methods for heavy-duty applications are based on standalone engine tests on engine dynamometers. However, this method has several limitations. Firstly, engine testing does not account for the properties of the vehicle itself (vehicle weight, drive train, body structure etc.). Moreover, engine testing is very impractical when evaluating in-service vehicles. Dismounting the engine from a vehicle is very laborious as such, and because the engine is coupled with forever more complex electrical system of the complete vehicle, even more work is needed to make the engine run as a stand-alone unit.

Testing complete vehicles on a chassis dynamometer resolves many problems and overcomes the barriers mentioned above. Additionally, complete vehicle testing generates truthful specific emissions in grams per kilometer or mile instead of per difficultly approachable grams/kilowatt-hour. A number of test cycles have been developed for heavy-duty vehicles, especially for buses. The problem is that there are no universally recognized standards for testing of heavy-duty vehicles. It is also difficult to compare and interpret results generated with various cycles.

Objectives

The main objective is to compare a number of duty cycles with several heavy-duty vehicles aiming at the following goals:

- to generate understanding of the characteristics of different duty cycles
- to produce a key for cross-interpretation of emission results generated with different cycles
- to study the interaction between vehicle and fuel technologies and test procedures
- to pin-point the need for international harmonization in emission testing

Methodology and test program

7 new buses will be run using the 7 most well known duty cycles on chassis dynamometer. Different vehicle weights will be simulated. The test vehicles will be 3 European and 4 North American vehicles:

- diesel (Euro 3) without exhaust after-treatment (European)
- diesel (Euro 4/5) with exhaust after-treatment (SCR, European)
- natural gas, (Euro 5/EEV, European)
- diesel (US 2004 specification), with EGR and particle filter (North American)
- natural gas (US specification)
- diesel (Canadian specification)
- 1 diesel-electric hybrid bus (Canadian specification)

The measurements include both modal analysis of emissions and integrated values over the whole cycle. The operating parameters of the engines (derived from the engine control module) are recorded. Also fuel consumption will be measured.

VTT will measure the European vehicles. West Virginia will test two North American buses with conventional drive train, and Environment Canada will test one conventional bus and one bus with hybrid drive train. A description on VTT's new heavy-duty test facility can be found at: <u>www.vtt.fi/</u>

Each laboratory will use 3 common cycles: the German Braunschweig bus cycle, the US Orange County bus cycle and the RATP Parisian bus cycle. In addition, each laboratory will run tests on at least 4 additional cycles. VTT has included the SORT cycles developed by UITP (International Association of Public Transport).

The project combines both Cost Sharing and Task Sharing.

Expected outcome

The expected outcome is a decoder, which will make it possible to compare and normalize data that have been generated using various test cycles. As the test vehicles represent a number of different technologies, the testing will demonstrate how running conditions affect the performance of various technologies. Vehicles with advanced exhaust after-treatment can be expected to be sensitive to e.g. load and exhaust temperature. Energy savings with hybrid drive trains will be highly cycle dependent. The project will also contribute to worldwide harmonization of test methods.

5.3 Annex XXX Bio-safety Assessment: Animal Fat in Biodiesel

Operating Agent	ATF Advanced Technologies & Fuels Canada Inc.				
Decision to start	January 200	January 2004 (ExCo 29)			
Project Duration	Jan 2004 – 0	October 2005 (2 years)			
Participants	CDN, CH, F	FIN, and USA (4 countries)			
Total Budget	CAD 600 00	$00 (= \notin 380\ 000\ ca)$			
Project Leadership	(ATFCan) 80 Aberdeer Suite 400 Ottawa, ON Canada	ced Technologies & Fuels Canada Inc. n Street K1S 5R5 +1 613 231 3298 +1 613 231 4353			

Background

ATFCan is undertaking a study to evaluate the risks of using animal tallow derived from specified risk materials (SRMs), dead stock, and downer animals as feedstock for the production of biodiesel. Given the presence of bovine spongiform encephalopathy (BSE) in cattle in Europe and now Canada, there is strong interest within government and industry in assessing new methods to dispose of high-risk materials in value-added applications. **Objectives**

The study will determine what risks, if any, are present to animal and human health, and to ascertain what key knowledge gaps may exist that need to be addressed through experimental work.

Content of Work

The project is divided into two key areas of investigation. The first area addresses prions (BSE) and whether rendering practices and processes such as esterification (biodiesel production) and engine combustion are effective at deactivating prions and whether there is any prion carry-over into tallow. The second area deals with emerging issues in animal tallow; these include heat resistant bacteria, the presence of heavy metals, antibiotics, pesticides and dioxins.

Financial Status

A total of four countries, Canada, Finland, Switzerland and the United States of America are supporting the project and contributing a total of \$ 600 000 CAD to the work program.

Time Schedule

The project that started in November 2003 will be completed in spring of 2005 with the study reports to be publicly released in June 2005.

Results and Reports:

The results of the study will be published as 3 separate stand alone reports. The primary study report will be a qualitative risk assessment which will address the use of animal fat including those from high-risk materials such as dead stock animals, specified risk materials (SRMs), and animals that have bovine spongiform encephalopathy, to produce biodiesel. The second report will be a review of current diagnostic techniques for detecting pathogenic prions (TSE diseases) in animals and the current physical limitations. The third report will look at new and emerging issues in animal fat such as the solubility of pharmaceuticals, pesticides, mineral supplements etc. and the potential concern these materials could pose if these materials are present in animal tallow which is then used to produce biodiesel.

An experts' workshop to discuss the study reports will be organized for June 21, 2005 in Ottawa, Canada.

Future Plans

A second and third phase experimental work program to build on the activities of the original project is being planned. The second phase will address the majority of key technical knowledge gaps that currently exist with respect to understanding the prion deactivation potential of the biodiesel transesterfication processes, the constituent components found in the insoluble fraction in animal tallow, and the ability of a diesel engine to incinerate prions. These knowledge gaps need to be covered off if a thorough quantitative risk assessment is to be carried out in the future. The second phase work program is being proposed for 2005 to 2006 and will be overseen by an international panel of experts. The third phase work program will be comprised of a set of bioassay experiments and will examine the transesterfication processes to determine more precisely the ability of the processes to deactivate prion materials. This third phase, which would involve mice and possibly hamster colonies, would run from 2005 to 2007.

5.4 Annex XXXI Production and Use of Synthetic Vehicle Fuels made by Fischer-Tropsch Technique

Operating Agent	Atrax Energi AB, Sweden			
Assistants	DTU, Denmark TFK, Sweden			
Decision to start	October 2004 (ExCo 30)			
Project Duration	Nov 2004 – Jan 2006 (1,5 years)			
Participants	DK, FIN, and USA (3 countries)			
Total Budget	€ 130 000 (FIN 30 000 +DK 40 000 + USA 60 000)			
Project Leadership	Mr. Björn Rehnlund Atrax Energi AB Box 30192 SE-104 24 Stockholm Sweden Phone: +46 73 384 24 46 E-mail: <u>bjorn.rehnlund@atrax.se</u>			

Background

Synthetic fuels for vehicle use, as paraffins (synthetic diesel oil) and alkylates (synthetic gasoline) are more and more being regarded as sustainable future alternative fuels for the transport sector. The main reasons are that they can be produced from natural gas as well as from almost all types of gasified biomass including garbage and sewage sludge and that the possibility to adjust them by the use of FT technique to different types of engine requirements are very good. FT-fuels are also most promising with regard to emissions and engines performance. However, for the moment the knowledge of FT-fuels, their production and use is spread among many different sources like companies and universities and not always in a form that is easy to read and understand for policy and decision makers in government and industry.

Objectives

The main objective is to present an analysis of the FT-Fuels role in the future transportation system in an easy accessible way for politicians and other decision makers for example in the industry

Content of Work

- Collect and analyse data concerning production and use of FT-fuels for vehicle purpose.
- Carry out vehicle dynamometer tests with different FT-fuels with the purpose to measure engine performance as well as tail pipe emissions.
- Carry out life cycle analysis concerning production and use of FT-fuels produced from different raw materials in USA and the Scandinavian countries
- Analyse FT-fuels' possible role in a future transport system

Financial Status

Total budget € 130 000. A first invoice has been sent out in February 2005 A final invoice will be sent out in December 2005/January 2006 when the annex is finally reported

Time Schedule

The work of the annex will be carried out during 2005.

Results and Reports

The result will be preliminary reported at the ExCo meeting in September 2005 and a final written report is planned for December 2005.

Future Plans

If there is an interest among the annex participants and/or other IEA/AMF participants the work of the annex can be prolonged in a second phase concerning LCA-scenarios for other regions as for example southern Europe, Japan, and India. A second phase could also include an economical study on the possibility of FT-Fuels future to be established on the fuel market.

5.5 Annex XXXII Future Fuels for Road Transport

Operating Agent	Atrax Energ	i AB, Sweden	
Assistant	Martijn van Walwijk, France		
Decision to start	October 2004 (ExCo 30)		
Project Duration	Phase 1: No	v 2004 –Dec 2005 (1 year)	
Participants	FR?, I, J (LEVO & NEDO), and USA (3-4 countries, to be confirmed)		
Total Budget	€ 260 000 ca	a, of which € 187 000 for Phase 1	
Project Leadership	Mr. Björn Rehnlund Atrax Energi AB Box 30192 SE-104 24 Stockholm Sweden Phone: +46 73 384 24 46 E-mail: <u>bjorn.rehnlund@atrax.se</u>		
Martijn van	Walwijk:	<u>m.van.walwijk@wanadoo.fr</u>	

Background

Today there is a growing demand for new alternative vehicle fuels, fuels to replace conventional fuels as diesel oil and gasoline and alternative fuels more and more becoming an accepted part of the total vehicle fuel supply. However for the moment almost all alternative fuels are more expansive to produce than today's conventional fuels. At the same time the conventional fuels are steadily being improved and new reformulated, low-sulphur, lowbenzene, low-aromatic qualities are possible to use resulting in low total emissions and low impact on environment and health. Also the engine technology is being developed resulting in reduced consumption of fuels and reduced emissions and low impact on environment and health. To summarize: Policy and decision makers are facing many dilemmas regarding the development and introduction of conventional as well as alternative fuels

Objectives

- Identify new engine concepts and improvements of today's engine technologies
- Identify which demands that have to be put on the fuels to be used in these new engine concepts
- Examine which fuels of today that can be used in these new engine concepts and which fuels that have to be regarded as dead end streets
- Carry out a first economical assessment of production, distribution and use of the fuels that will have a possibility to be used in today's as well as tomorrow's engines.

Content of Work

To carry out a first short literature survey focusing on articles and statements from experts and high-level decision makers within

- Vehicle and engine manufactures
- Governments
- Universities
- International organizations
- Relevant national and international branch organizations

Interview the most relevant decision makers and analyse and summarize their answers concerning what they regard as the most promising and hopeful future in the fields of engine technology and fuels adapted for such new or developed engine technology

Financial Status

To be discussed.

Time Schedule

To be further discussed.

Results and Reports

- Presentation of preliminary results at IEA/AMF ExCo September 2005.
- Written interim report for Phase 1 (se below) in December 2005

Future Plans

The work will be carried out in three phases. In the first phase interviews will be carried out with relevant people from the car and engine manufacturing industries. The result will be summarized and reported to IEA/AMF in an interim report.

In a second phase the same kind of interviews will be carried out with people from the oil industry. The second phase will also include a workshop with people from the car and engine industry as well as the oil industry. The results of Phase 2 and the results from the workshop will be reported to IEA/AMF in a second interim report.

In Phase 3 an economical assessment of the most probable scenarios will be carried out. The overall result of this assessment and the results of Phase 1 & 2 will be put together in a draft final report, which will be presented at a international IEA/AMF seminar with invited people from industry, government, etc - not only from the IEA countries but also from developing countries.

5.6 Annex XXXIII Particle Emissions of 2-S Scooters

	(Reduction te	chnology and Inputs for Legislation)
Operating Agent	11	lied Sciences Bern (AFHB) aust Emissions Control
Assistant	Jesper Schran	nm, DTU, Denmark
Decision to start	October 2004 (ExCo 30)	
Project Duration	July 2004 – June 2006 (2 years)	
Participants	CDN, CH, DK, F, FIN, I, and JRC EU Laboratories	
Total Budget	No AMF budget. Task-sharing. Total costs € 20 000.	
Project Leadership	Prof. Jan Czerwinski Univ. of Applied Sciences Bern (AFHB) Lab. for Exhaust Emissions Control Gwerdtstrasse 5 CH-2560 Nidau Switzerland Phone: +41 32 321 66 80 Fax: +41 32 321 66 81 E-mail: jan.czerwinski@hti.bfh.ch	

Background

The serious health effects of particle emissions from traffic are known from the discussions about diesel engines technology and legislation. In this context the particle emissions of small 2-S engines with lost oil lubrication cannot be neglected any more.

A particular concern is about the 2-S scooters, small motorcycles and 2-S 3-wheelers which in several countries are used very much in congested city centers.

Objectives

According to the participation of different partners there are following objectives of the activities:

- basic research of the 2-S aerosols, their composition with different lube oils and fuels and with different engine technology
- study of sampling and measuring procedures for particle mass and particle size distribution
- research of improvements of exhaust gas after-treatment systems

- toxicity and new methods of health effects research
- new inputs for industrial partners concerning their products
- new inputs for the legal authorities
- AMF Annex XXXIII: including of new partners, who actively work in this field and creation of further collaboration and/or information exchange.

Content of Work

- 1. Technical topics of the Swiss working network:
 - emission factors of 2-S scooters with consideration of particle mass and counts
 - catalyst ageing
 - research of sampling for particle analysis
 - research of influences of different oils and fuels on the particle emissions
 - research of emissions, of catalyst ageing and VOC-analytics at the EMPA Federal Laboratories
- 2. Analytical works at the JRC EU Laboratories, Ispra (PAH, TEQ)
- 3. Preparations of the joint activities with the French toxicity network
- 4. Preparations of activities with Indian authorities
- 5. Requests for participation and/or information by other interested parties under leadership of Prof. J. Schramm, DTU

Financial Status

The framework of Annex XXXIII is at task-sharing basis, i.e. each partner has own sources of financing his work.

For the activities of the Swiss Operating Agent a budget of € 20 000 is available.

Time Schedule

- Meeting Zurich, Jan. 12, 2005
- 1st technical report from the Swiss Network (June 2005)
- Meeting Zurich, June 15, 2005
- 1st information report for Annex XXXIII (Oct. 2005)
- 2nd technical report from the Swiss Network (Dec. 2005)
- Meeting Zurich, February 15th, 2006
- Further technical reports from the Swiss Network
- 2nd final information report for Annex XXXIII (Oct./Nov. 2006)

Results and Reports

The results will be presented in the technical reports, which will be officially available after approval by the industrial partners.

Other working groups of the network will be encouraged to give appropriate information about their activities. The summaries of this information will be given in the information reports for Annex XXXIII.

In the 1st information report for Annex XXXIII (B169) the activities and results of following institutes have been shortly presented:

- AFHB, Automotive Division Biel, CH of the University of Applied Sciences Bern, CH
- EMPA Federal Laboratories, CH
- ENEA & Municipality of Rome, I
- RICARDO Consulting Engineers, UK
- Technical University Graz, A
- EU Joint Research Center, Ispra, I
- Technical University of Denmark

The most important conclusions are:

The importance of 2-S 2-wheelers emissions and their contribution to the air pollution in the cities is recognized and investigated in several countries.

The primary source of particle emissions is lubricating oil, which consumption has to be minimized.

Several improvements of particle emissions can be achieved by right choice of oil quality, by increasing the catalytic post oxidation, by using more efficient particle trap systems and eventually using of alternative fuels.

Very sophisticated technical solutions, like hybrid scooter, or H₂-mobike are possible, but difficult from the point of view of costs.

There is an interest of the EU-authority to further lower the emission levels and the toxic effects of 2-S 2-wheelers. Nevertheless the legal limits for particle mass, or counts are still not taken into consideration, for this sensible market sector.

Future Plans

- Further research of:
 - influences of oils and fuels
 - influences of catalyst technology
 - special wire mesh filter catalyst (WFC)
- Adaptation of the results to the engine/vehicle technology, oils and fuels from other markets
- Further studies of health effect
- Support by legal authorities

Appendix 1

COMPLETED PROJECTS/ANNEXES

(Status February 2006)

Main Results of Earlier Projects

Some more spectacular results of now completed projects are summarised here. Information about participating countries and their contributions is found in the following Tables 3 and 4.

Annex I Alcohols and Alcohol Blends as Motor Fuels

Operating Agent: SDAB (S)

This initial project/annex resulted in a state-of-the-art publication in three volumes printed in 2 000 copies which became a best seller in 1986.

Annex II Technology Information Exchange on Alternative Motor Fuels

Operating Agent: SDAB (S)

A number of studies on specific issues concerning various alternative motor fuels were reported in a series of "TRENDS". Altogether 21 different reports were prepared and distributed to the participating countries.

Annex III Alcohol Diesel Field Trials

Operating Agent: Sypher (CDN)

Data were collected, assessed and disseminated on the use of various methanol fuels in heavyduty compression ignition engines used in trucks and buses as well as in rail, marine and stationary applications. The project resulted in 13 reports.

Annex IV Production of Alcohols and Other Oxygenates

from Fossil Fuels and Renewables

Operating Agent: Natural Resources Canada (CDN)

The activities of the Annex were conducted in two phases. The second phase, which was completed in 1995, consisted of four studies, dealing with

- Natural Gas Supply, Demand and Price;
- Economic Comparisons of the LNG, Methanol and Synthetic Distillate;
- A Comparison of the Production of Methanol and Ethanol from Biomass;
- Greenhouse Gas and Other Emissions to Air Resulting from Ethanol and Methanol Use as Alternative Fuels.

These studies demonstrated that feedstock availability for production of alternative fuels is not of concern, especially with regard to fossil fuels-based processes.

The production cost of alternative fuels, including the costs of feedstock, processing and transportation, has been provided for a large number of locations around the world.

The environmental benefits, as expressed in carbon dioxide-equivalent vehicle emissions, showed a great reduction for biomass-derived fuels, but minor variations for fossil fuel-based alternative fuels.

Annex V Cold Test Emissions

Operating Agent: VTT (FIN)

The first final report was published in March 1995 as a restricted report. After completing the later approved addendum on diesel vehicles, a new final report was published in February 1996 as a public report, according to decisions taken by the Executive Committee.

Altogether 3 engines and 14 cars were measured at 5 ambient temperatures, using new sophisticated emission analysis methods. The fuels used were different types of gasoline and diesel fuels as well as methanol and ethanol blends, LPG and CNG. The results indicated that M85 fuel can give lower emissions than gasoline in warm conditions, though the emission of unburned methanol must be controlled. Natural gas and LPG proved to be inherently clean fuels, which, using up-to-date engine technology, give low emissions in all conditions.

Annex VI Natural Gas as Motor Fuel

Operating Agent:	Sypher (CDN).
Assistant:	SDAB (S)

International information and experience of present and future use of natural gas as a motor fuel was collected, analysed and synthesised. The project included the use of compressed natural gas (CNG) and liquefied natural gas (LNG) in light-duty vehicles and heavy-duty vehicles. The potential of methane produced from biomass (biogas) was also explored.

Annex VII Comparison of Relative Environmental Impacts of Alternative and Conventional Fuels

Operating Agent:	ORNL (USA).
Assistant:	Phase 1: SDAB (S). Phase 2: Innas (NL)

Results of the project were (1) a paperback book detailing the findings of the study and (2) an addendum to the book updating the findings with results of more recent research on environmental impacts of alternative fuels. Both publications are useful to policy makers when a decision is necessary on whether to employ alternative fuels in transportation.

Annex VIII Heavy-Duty Vehicles on Alternative Fuels

Operating Agent: VITO (B)

This annex was carried out in two phases. In the first phase an analysis of the results of 73 different demonstration projects set up in several countries around the world was carried out. Because demonstration projects have different goals, use different test methods and procedures, it was hard to compare the results. A unification of test methods, especially for emissions and energy consumption, will increase the value of the outcome of a demonstration for third parties.

In a second phase a leaflet with recommendation for demonstrations was developed based on the results of the first phase and on the results of a workshop with demonstration experts.

Annex IX Automotive Fuels Information Service (IEA AFIS)

Operating Agent:	Innas (NL).
Assistant:	Atrax (S)

The result of this annex is an independent information service (IEA AFIS) that can answer strategic questions on automotive fuels. This information service has assisted in many other annexes of the Advanced Motor Fuels Implementing Agreement.

During the three operating years of the annex, five books have been produced in a series "Automotive Fuels Survey".

The first two volumes "Raw Materials and Conversion" and "Distribution and Use" describe the relevant aspects of the well to wheel fuel chain of automotive fuels. Fuels included are: gasoline, diesel oil, LPG, natural gas, alcohol fuels, vegetable oils and biodiesels, hydrogen and dimethyl ether. Aspects covered are for example: energy consumption, emissions, costs, technology, infrastructure, legislation and safety.

The third volume "Comparison and Selection" describes a method to use the enormous amount of available information when a decision on automotive fuels has to be made.

Examples are presented to clarify the working method. The examples include the fuels that are addressed in the first two volumes.

Volume four "Innovations or Illusions" addresses some special fuels that are not discussed in the first two volumes. Volume five "Mobile Machinery: Sector analysis" describes energy consumption and emissions of the mobile machinery sector, compared to road vehicles. It also discusses the role of alternative fuels in this sector.

Annex X Characterisation of New Fuel Qualities

Operating Agent: VTT (FIN)

The final report was distributed in September 1997 as a restricted report.

The results showed that the traditional cetane number measurement well describes the ignition delay of heavy-duty engines at low and medium loads, but is more suitable for hydrocarbon fuels than for alternative fuels. Thus, the cetane number does not describe the combustion process with advanced light-duty vehicles. The cetane number overestimates the effect of cetane improvers, especially for biodiesels. Esters were also found to act as effective lubricity additives according to HFRR tests.

Annex XI Forecasting and Planning Tools for Alternative Fuels and Related Infrastructure

Operating Agent: Sypher (USA)

The final report provided an overview of the major computer models studied. Detailed comparisons were made of the U.S. DOE's TAFVM, Califonia's CALCARS, Canada's AFIM, and the Netherlands' Electric Vehicle Impact models. The Canadian alternative fuels infrastructure model (AFIM) was tested using Australian and New Zealand experience. The AFIM model was also used to predict electric vehicle demand in Finland.

Annex XII Particulate Emissions from Alternative Fuelled Vehicles

Operating Agent: ETSU (UK)

Annex XIII Emission Performance of Selected Biodiesel Fuels

Operating Agent:	VTT (FIN).
Assistant:	ORNL (USA)

Oak Ridge National Laboratory (ORNL) and Technical Research Centre in Finland (VTT) carried out the project with complementary work plans. The work generated an extensive analysis of the exhaust emissions using biodiesel in new diesel engines. Several different engines were tested at the two sites, and some engines were tested also with emission control catalysts, both at ORNL and at VTT. ORNL concentrated on light and medium duty engines, while VTT emphasized a heavy-duty engine and also used a light duty car as a test bed. Common test fuels for two sites were rape methyl ester in 30 % blend and neat, soy methyl ester in 30 % blend and neat, used vegetable oil methyl ester (UVOME) in 30 % blend, and the Swedish environmental class 1 reformulated diesel (RFD). Results covered regulated emissions, aldehydes, composition of particulate matter, polyaromatic hydrocarbons and limited results of Ames tests on the mutagenicity (particulate matter).

Generally, the biodiesel fuels had higher NOx emissions but lower values of HC, CO, and particulates. Unregulated emissions varied greatly between fuels and engines. VTT's tests showed that the particulates generally seemed to be less harmful for neat bioesters than for diesel fuel. The changes in emissions were not as significant when 30 % bioester blends were compared with EN590 or RFD as when neat esters were used. No major differences were seen in emission performance between RME, SME (soy bean oil methyl ester) and UVOME, even though some benefit was seen for the UVOME fuel regarding CO, HC and aldehyde emissions with the TDI vehicle. The ethanol emulsion fuel gave some emission benefits regarding particulates. The hydrated tall oil blend gave worse emission figures than the other fuels, which is believed to be due to differences in the base fuel.

Both laboratories, ORNL and VTT, prepared final reports. In addition two publications are available.

Annex XIV Investigation into the Feasibility of Dimethyl Ether as a Fuel in Diesel Engines

Operating Agent: TNO (NL)

Annex XIV has been split up in the following seven tasks lead by different industrial enterprises.

- *Trade-off fuel quality versus costs:* Haldor Topsoe (DK) and Statoil (N)
- *Safety investigation (DME distribution and vehicles):* Renault (F), Akzo-Nobel (NL), TNO-WT and TNO-MEP (NL) and NRCanada (CDN)
- Design guidelines: AVL-List (A), AET (CDN), Renault (F) and DTU (DK)
- *DME from renewable feedstock:* IEA AFIS (Atrax Energi, S)
- *Life cycle analysis (LCA):* IEA AFIS (Innas, NL), Amoco (USA), Statoil (N), Haldor Topsoe (DK), Volvo Truck (S), Renault (F) and TN-WT (NL)
- Costs of DME infrastructure: IEA AFIS (Innas), Statoil (N) and Amoco (USA)
- *Workshops / newsletters:* TNO-WT (NL)

Annex XV Implementation Barriers of Alternative Fuels

Operating Agent: Innas (NL)

The report that has been produced under this annex presents an overview of the practical barriers associated with the introduction of an alternative fuel and analyses alternative fuels in broad terms with respect to these practical barriers. Fuels addressed in the report are: LPG, natural gas, ethanol, methanol, biodiesel and hydrogen. Also electric vehicles are included. Some remarks are made on the barriers that may be expected for dimethyl-ether.

Annex XVI Environmental and Economical Aspects of Implementing Biodegradable Lubricants in Vehicle Engines

Operating Agent: DTU (DK)

The results of the project are described in 3 reports that were published in 1999, 2002 and 2004 respectively. Report 1 one was a state-of-the-art report. Report 2 was describing performance experiments, carried out with a diesel vehicle, where an ester based biodegradable lubricant was applied. This situation was compared to experiments where a reference lubricant was applied. In both cases the lubricants where applied in connection with conventional diesel fuels and biodiesel. Report 3 was describing performance experiments, carried out with a gasoline vehicle, where the same ester based biodegradable lubricant was applied. This situation was describing performance experiments, carried out with a gasoline vehicle, where the same ester based biodegradable lubricant was applied. This situation was then compared to experiments where a reference lubricant was applied. In both cases a reference gasoline fuel was applied together with E85.

Annex XVII Real Impact of New Technologies for Heavy-Duty Vehicles

Operating Agent: VITO (B)

The final report was distributed between the participants in December 2000.

Within this project, three city bus technologies were selected to compare emissions and fuel consumption in real traffic (city and rural), in several vehicle test cycles (CBDC, DUBDC, De Lijn) and in the main official engine test cycles (ESC, ETC, US-FTP, Japan 13-mode). The purpose was to look for clear relations between these test procedures.

The three buses were a Euro-2 diesel bus, a natural gas bus with stoichiometric fuel control and three-way catalyst and a natural gas bus with lean burn fuel control.

The stoichiometric natural gas bus reached very low emission levels compared to the diesel bus (regulated emissions were about 10 times lower). The lean burn natural gas bus needed some adjustments in the lambda control settings to lower its relatively high NO_x emissions.

The test results showed that there is no unique relation between real city traffic emissions and the different engine or vehicle test cycles. The relation depends on engine technology, gearbox (and gear shifting strategy), and the engine load vs. speed distribution during the test cycle.

Annex XVIII Future Greener Diesel Fuels

Operating Agent: Battelle (USA)

In order to support the use of oxygenates in diesel fuels, this annex provided data on the miscibility, flash point, cloud point, water tolerance, vapour pressure, and ignition quality over a range of diesel fuel-oxygenate blends and environmental temperatures through laboratory tests with diesel fuel and oxygenate samples.

The diesel fuels included a USA reference diesel, a Fischer-Tropsch diesel, and an oil sands diesel. The oxygenates tested included:

- 1. dipentyl ether,
- 2. tripropylene glycol monomethyl ether,
- 3. glycerol tributrate (tributrin),
- 4. 2-ethoxyethyl ether (diethylene glycol diethyl ether),
- 5. dibutyl maleate,
- 6. dibutoxymethane (butylal), and
- 7. diethyl maleate [Only limited work because of miscibility difficulties].

Oxygenate blend levels were 0 (diesel only), 5, 10, 30, and 100 (oxygenate only) volume percent. Test temperatures ranged from -30 to 30 C. Vapour pressure measurements were made using a gas chromatographic technique that distinguished fuel and oxygenate contributions to the total vapour pressure. Ignition quality measurements were made using the IQT constant volume combustion apparatus.

Annex XIX New Fuels for New Engines

Operating Agent: Innas (NL)

The final report was published in January 2001 as volume 6 in the Automotive Fuels Survey series of IEA AMF/AFIS under the title "Fuels for HCCI engines". It describes homogeneous charge compression ignition (HCCI) operation in four-stroke, two-stroke and free piston engines. The relation between fuel characteristics and HCCI operation is discussed. The report contains an extensive list of references and also lists organisations working on HCCI engines. Outside AMF the report has been distributed within the Clean Diesel III consortium, co-ordinated by SwRI in the USA.

Annex XX DME as an Automotive Fuel II

Operating Agent: TNO (NL)

The result of the Annex XX is twofold:

A) Technical research in the area of DME fuel injection systems.

B) Support for international cooperation to stimulate the development of DME as a new fuel. This was supported by organising workshops and distributing newsletters.

The work also resulted in the foundation of the International DME Association and in a EU project about the development of a DME fuelled truck.

The technical work:

- A test procedure to test material (wear) properties with DME
- Advise on wear resistant coatings for DME fuel injection system parts
- Selection of elastomers suitable for sealing DME fuel systems
- Determination of influence of additives on DME lubricity and viscosity.

Annex XXI Deployment Strategies for Hybrid, Electric and Alternative Fuel Vehicles

Operating Agent: Innas (NL)

In the last years the harmful effects and the greenhouse gases resulting from the use of conventional vehicles created many concerns on continuing in the same direction. Hybrid or electric vehicles and alternative fuels like natural gas, ethanol or hydrogen are considered an essential element in reducing urban pollution and greenhouse gases. But only a wide dissemination of "clean vehicles and fuels" can have noticeable effects on the environment. Therefore governments, in addition to the support of research and development, more and more implement measures with the aim of promoting the market introduction of these new vehicle technologies – with different approaches and various effects.

Between 2000 and 2002 an international task force collected information on more than 100 programs run in 18 countries. Evaluations and analyses of case studies showed that some approaches are successful, but they also identified weaknesses that are often repeated. The report elaborated by the task force provides recommendations on the base of conclusions drawn by the analyses. They will help government officials responsible for administering fleets, incentives and regulations with assessing the most promising strategy for their country for the market introduction of hybrid, electric and alternative fuel vehicles.

Annex XXII Particle Emissions at Moderate and Cold Temperatures Using Different Fuels

Operating Agent: VTT (FIN)

The Annex XXII was active from 2000 to 2003 as a task sponsored by the (IEA/AMF). The research work on particulate emissions of road traffic has been carried out at normal ambient temperature. Even a slight reduction in temperature can increase particulate emissions. For many years, it has been obvious that the knowledge of the total particulate mass emissions is not enough. Quality of these particles, like polyaromatic hydrocarbon content, has already been studied widely. Now there is also a need to gain more information on fine particles. Especially, the possible effect of temperature on particle size has not been studied much. This project was targeted to cover different fuel and engine technologies, including gaseous fuels and biodiesel. Research work focused on different light-duty technologies. However, preliminary tests were conducted with a medium-duty engine to evaluate the suitability of different measuring techniques at low test temperatures. Light-duty vehicles were as follows: two diesel cars (direct and indirect-injection), stoichiometric gasoline fuelled car (multi-

portfuel-injection), direct-injection gasoline car, FFV car running with E85 fuel, CNG and LPG cars. Four fuels with diesel cars were studied: European grade diesel, Swedish Environmental Class 1 fuel and blends of these fuels and RME.

With medium-duty engine the effect of temperature on particles was clear and seen both in the particle mass and number results, which was assumed to be related to the condensed hydrocarbons. Generally, both particle mass and number emissions were high with diesel cars when compared to the other cars. Particle emission increased as test temperature decreased in the beginning of the test (cold start) with both diesel cars, but the effect of temperature diminished when engine warmed up. RME showed benefit concerning particle mass emissions, but indication of higher number of particles and peak at lower size class was seen when compared to EU2000 at -7 °C, but similar effect was not seen when RME was blended with the reformulated diesel fuel. Particle emissions were extremely low at +23 °C with MPI, E85, CNG and LPG cars, but significantly higher with the G-DI car. Particle mass and number emission from MPI, E85, LPG and G-DI cars after cold start increased to some extent as temperature decreased. The particle mass and number emissions from the CNG car stayed at the "zero" level at all temperatures studied. Typically, if the effect of temperature on particle results was seen, it occurred after the cold start and diminished as engine, catalyst and/or EGR system warmed-up.

Annex XXIV Information Exchange IEA AMF/AFIS

Operating Agent: Innas (NL)

Three newsletters were produced and distributed annually under this Annex. Distribution was inside the AMF community and also to a large audience outside AMF. The newsletters provided the latest worldwide news on advanced motor fuels. In every issue there was a section describing activities and results of the Implementing Agreement, including the results of the work in other Annexes.

Annex XXV Fuel Effects on Emissions from Non-Road Engines

Operating Agent: VTT (FIN)

The Annex came active on May 2001 and was completed summer 2003. Existing data has been put on the IEA AMF web site since the autumn of 2001. Measurements were carried out with small gasoline engines and non-road diesel engines. The objective of this Annex was to study how fuel quality affects the exhaust emissions from engines mentioned above.

The measured small engines were a 2-stroke chainsaw engine, and a 4-stroke OHV engine, which could be used in different applications. Measurements were done with three different fuels, with and without catalyst. The results clearly demonstrate that using a good quality fuel (e.g. low sulphur, low aromatics) and a catalyst gives the best outcome in overall emission levels from these small engines.

In the second part two different diesel engines were tested with five different fuels. Two of the fuels were biodiesel blends. The engines were chosen to represent old and new engine technology. The old engine (MY 1985) was produced before EU emission regulations were in place, and the new engine fulfilled the current EU Stage 2 emission limits. With the new engine comparison with and without oxidation catalyst was done using two fuels. The results in general are similar compared to the results from the small gasoline engines: fuel quality has an effect on the emissions and when combining a good quality fuel (e.g. low sulphur, low aromatics) and an oxidation catalyst the emission levels are significantly reduced.

Annex XXVI Alcohols and Ethers as Oxygenates in Diesel Fuel

Operating Agent: Befri Konsult (S) & TEC TransEnergy Consulting Ltd (FIN)

In Milan in April 2002, at its 27th meeting, the Executive Committee of the IEA Implementing Agreement of Advanced Motor Fuels (AMF) decided to start a new Annex on alcohols and ethers as oxygenates in diesel fuel (Annex XXVI). Originally the Annex was designed to focus on practical experiences of using alcohols/ethers as oxygenates in diesel fuel. Compared with the original project plan, a more detailed chapter about fuel properties was added to the final report, also dealing with limitations of blending low-boiling components into diesel fuel. Befri Konsult of Sweden carried out the initial part of the work. The report was finalised by TEC TransEnergy Consulting Ltd (Finland) in cooperation with Turku Polytechnic (Finland).

Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol blended into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications.

The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also of importance. So far, no engine manufacturers have indicated they will extend warranty coverage to their equipment when operating with E-diesel.

The reports on field tests with oxygenated diesel fuels are rather scarce, especially reports on recent tests. There are, however, some reports available on engine tests and tests with trucks, buses and even off-road equipment. Most of the available test results identified fuel economy and cost as the only appreciable differences between E-diesel and conventional diesel fuel. Most emissions tests with heavy-duty engines confirm the effect of a substantial reduction in PM when running with E-diesel. The typical range for PM reduction is 20 - 40 %. Most studies also report reduced NO_x emissions. Earlier, there were a lot of activities with E-diesel in Sweden. For the time being, California and Brazil are leading the development of E-diesel.

Annex XXVII Standardisation of Alternative Motor Fuels

Operating Agent: Atrax Energi AB (S)

The annex was established by IEA/AMF in April 2002. During Phase I a state of the art report was produced concerning standardization of alternative fuels in Canada, Finland, France, Japan, Sweden, USA and the European Standardisation Organisation CEN as well as the International Standardisation Organisation ISO. During Phase I was also a first investigation carried out concerning a possible co-operation between IEA/AMF and CEN and/or ISO. The result of Phase I was presented to the ExCo in January 2004 and a written report was distributed to all IEA/AMF participants.

In March 2003 IEA/AMF decided to start a Phase II of the Annex with the purpose to further and more thoroughly analyse the possibility and if so also the forms for a co-operation between IEA/AMF and CEN and/or ISO. The result was presented to IEA/AMF in October 2004 and a written report was distributed to all IEA/AMF participants. The result of Phase II was a recommendation to IEA/AMF to seek for co-operation with both CEN and ISO since it would be of importance for IEA/AMF in its work to i.a. disseminate knowledge and experiences from work done with support from IEA/AMF and also would contribute to make IEA/AMF more known by countries around the world. For the moment is a proposal being discussed concerning how to carry out such a co-operation. The proposal is to establish a new Annex for co-operation with CEN and ISO concerning standardization of alternative as well as advanced motor fuels.

A report covering data and information collected during Phase I as well as proposals for future work has been distributed in November 2003.

In October 2004 a report of Phase II concerning co-operation between IEA/AMF and CEN and/or ISO was distributed

Both reports are publicly available through Atrax, the ExCo members and the AMF Secretary. *The reports can also be downloaded from the AMF website ("Downloadable Documents").*

<u>Annex XXX</u> Animal Fat in Biodiesel

Operating Agent: ATFCan (CDN)

The complete final report is pending, and will be provided to the participants of the Biosafety Workshop in Ottawa, Canada on June 21, 2005. Additional details of the final report and how to obtain copies will be available at ATFCan's website April 2005 (please visit <u>www.atfcan.com</u>).

<u>Annex XXXIII</u> Particle Emissions of 2-S Scooters

1st Information Report about international activities 2004/2005 is available.

Table 3a. Completed Projects (Annex I – XV)

The following 15 projects/annexes have been completed during the period 1984-2005.

Annex	Title	Run time	Operating Agent	Participating Countries
Annex I	Alcohols and Alcohol Blends as Motor Fuels	1984 – 1986	SDAB (S)	5
Annex II	Technology Information Exchange on Alt Motor Fuels	1984 – 1992	SDAB (S)	7
Annex III	Alcohol Diesel Field Trials	1987 – 1992	Sypher (CDN)	6
Annex IV	Production of Alcohols and other Oxygenates	1987 – 1994	Energy, Mines and Resources (CDN)	5
Annex V	Performance Evaluation of Alt Fuel/Engine Concepts	1990 – 1995	VTT (FIN)	9
Annex VI	State-of-the-art Report on Natural Gas as a Motor Fuel	1990 – 1992	Sypher (CDN) SDAB (S)	6
Annex VII	Environmental Impacts of Alternative and Conventional Fuels	1992 – 1997	ORNL (USA) Phase 1: SDAB (S) Phase 2: Innas (NL)	8
Annex VIII	Heavy-Duty Vehicles on Alternative Fuels	1994 – 1998	VITO (B)	8
Annex IX	Automotive Fuel Information Service (AFIS)	1995 – 1999	Innas (NL) Atrax (S)	7
Annex X	Characterisation of New Fuel Qualities	1995 – 1997	VTT (FIN)	7
Annex XI	Forecasting and Planning Tools for Alternative Fuels	1995 – 1996	Sypher (USA)	3
Annex XII	Particulate Emissions from Alternative-Fuelled Vehicles	1996 –1997	ETSU (UK)	6
Annex XIII	Emission Performance of Selected Biodiesel Fuels	1997 – 1999	VTT (FIN) ORNL (USA)	7
Annex XIV	Feasibility of DME as a Fuel in Diesel Engines	1997 – 2000	TNO (NL)	7 +4 sponsors *)
Annex XV	Implementation Barriers of Alternative Fuels	1998 – 1999	Innas (NL)	5

*) Sponsors: AVL from Austria and IFP, PSA, and Renault from France

Table 3b. Completed Projects (Annex XVII - XXVII)

The following 12 projects/annexes have been completed during the period 1997-2005.

Annex XVI	Biodegradable Lubricants	1998 - 2004	DTU (DK)	6
Annex XVII	New Technologies for Heavy-Duty Vehicles	1998 - 2000	VITO (B)	7
Annex XVIII	Future Greener Diesel Fuels	1997 – 2002	Battelle (USA)	7
Annex XIX	New Fuels for New Engines	2000 - 2001	Innas (NL)	5
Annex XX	DME as Automotive Fuel II	2000 - 2002	TNO (NL)	7
Annex XXI	Deployment Strategies	2000 - 2003	Innas (NL)	4 from AMF 7 from HEV
Annex XXII	Low Temperature Particles	2000 - 2003	VTT (FIN)	6 +2 sponsors *)
Annex XXIV	Information Exchange IEA AMF/AFIS	2000 - 2004	Innas (NL)	10
Annex XXV	Non-Road Engines	2000 - 2003	VTT (FIN)	4 **)
Annex XXVI	Oxygenates in Diesel	2002 - 2005	Befri (S) TEC (FIN)	4
Annex XXVII	Standardization of Alternate Fuels	2000 - 2004	Atrax (S)	4-6
Annex XXX	Animal Fat in Biodiesel	2004 - 2005	ATFCan (CDN)	4

*) Industrial partners: Ford Motor Co and Honda R&D Europe

**) Industrial partners: Fortum Oil and Gas Oy (fuels), Ecocat (former Kemira Metalkat Oy) (catalysts), and Sisu Diesel Oy (CI engines)

Table 4a. Completed Projects (Annex I-X)

Participation and financial commitments are shown in the following table.

			Parti	cipa	ting (Coun	tries	and	their	Con	tribu	itions	5	
Annex		Œ	lenote	s the (Operat	ing A	gent.	Amou	nts are	e give	n in 1	000 U	JSD.	
	В	CDN	DK	ES	FIN	FR	Ι	J	NL	NZ	S	UK	US	Total
I Alcohols as Motor Fuels		35						35		15	Œ 25		35	145
II Information Exchange Phase 1 (1984-88) Phase 2 (1988-92)		40 60			60		40 60	40 60		30	Œ 40 60		40 60	200 390
III Alcohol Diesel Field Trials		Œ 40.5			5		40.5	40.5			40.5		40,5	208
IV Production of Alcohols Phase 1 (1987-89) Phase 2 (1990-94)		Œ 60 40					32.1	40			40		40	60 192
V Cold Test Emissions Phase 1 (1990-93) Phase 2 (1993-94) Phase 2 (1994-95)	30 7	20 30			Œ 36 50 21		20	32.3 29 7	12 17.5 7		20 30 7	12.5 7	20 37 7	160 236 63
VI Natural Gas as Motor Fuel		Œ 41.7			41.7		41.7	41.7			41.7		41.7	250
VII Environmental Impacts Phase 1 (1992-95) Phase 2 (1996-97)	25 8	25 8			25 8		25	25 8	25 8		45 8		Œ 45 8	235 56
VIII Heavy-Duty Vehicles Phase 1 (1994-98) Addend (1996-98)	Œ 5 5	5 3.5			5 5			5 3.5	5 5		5 3.5	5 3.5	5 5	40 34
IX Information Service AFIS	35	30			45				Œ 108		124	68.4	67.7	478
X New Fuel Qualities	8	8			Œ 40			8	8		12		8	92

Table 4b. Completed Projects (Annex XI-XXVII)

	Participating Countries and their Contributions													
	Annex		E der		-	0								D.
		(B) CH	CDN	DK	ES	FIN	FR	I	J	NL	S	UK	US	Total
	Forecasting and Planning Tools		15			10							Œ 50	75
	Particulate Emissions	22.7	22.7			22.7				22.7		Œ 22.7	22.7	136
	Biodiesel Fuels	32	32			Œ 75			39.7	32	42		95	348
	DME as Fuel I		110	90		20			40	Œ 85	180		80	787*
XV	Implementation Barriers					13			13	Œ 13	13		13	66
	Biodegradable Lubricants			Е ?		?		?	?		?		?	199
	Heavy-Duty Vehicles	Œ 80				40		0**	40	40	40		40	280
	Future Greener Diesel Fuels		5			10	10		10	10	10		Œ 10	65
	New Fuels for New Engines		8			8				Œ 8	8		8	40
	DME as Fuel II			10		10 (T	30	10	10	Œ 20	10		10	150***
	Low Temperature Particles		?			Œ ?		?	?	Œ	?		?	210
	Information Exchange IEA AMF/AFIS		X	x	X	X	X	X	X	Œ X	X	X	X	58
	Non-Road Engines					Œ ?	?				?		?	120
	Oxygenates in Diesel		8			Œ		8	8		(Œ) -	8		32
	I Standardization of Alternate Fuels		24			10	15		27		Œ 30		27	133
XXX	Animal Fat in Biodiesel	400	Œ 13			13							50	476
Т	OTAL													6 257

Participation and financial commitments are shown in the following table.

*) In the sum USD 787 000 are included also contributions from the Sponsors IFP/PSA/Renault (France) with USD 55 000 and AVL (Austria) with USD 32 000. The former IA member Norway contributed USD 95 000.

**) Italy contributed to this annex on a task sharing base carrying out engine tests.

***) In the sum USD 150 000 are also included contributions from the Sponsors PSA and Renault (France), TNO and Helvoet (NL) with each USD 10 000.

Appendix 2

WORKSHOPS

(Status February 2006)

The following Workshops have been arranged during recent years.

- Heavy-Duty Vehicles on Alternative Fuels, Annex VIII *Organized by*: VITO (B) in Brussels, 5 December 1996
- 1st DME Workshop: DME as Fuel, Annex XIV Organized by: TNO (NL) in Delft, 14-15 November 1996
- 2nd DME Workshop: DME as Fuel, Annex XIV *Organized by*: TNO (NL) in Delft, 26-27 June 1997
- 3rd DME Workshop: DME as Fuel, Annex XIV Organized by: TNO (NL) in Naperville, Illinois, USA, 26-27 February 1998
- 4th DME Workshop: DME as Fuel, Annex XIV Organized by: TNO (NL) in Delft, 1-2 October 1998
- Clean Energy Vehicle Forum to discuss clean energy vehicle programmes in Japan and EU *Organized by*: NEDO, LEVO and JARI in Tsukuba, Japan, 21 October 1998
- 5th DME Workshop: DME as Fuel, Annex XIV Organized by: AVL (Austria) in Graz, 24-26 March 1999
- 6th DME Workshop: DME as Fuel, Annex XIV Organized by: Volvo (Sweden) in Göteborg, 2-3 December 1999
- Kick-off Workshop: Deployment Strategies, Annex XXI Organized by: Muntwyler (Switzerland) in Glattbrugg, 24-25 February 2000
- 7th DME Workshop: Dimethyl-ether as an automotive fuel II, Annex XX *Organized by*: AVL PTI (USA) in Plymouth [MI], 1-2 June 2000
- 8th DME Workshop: Dimethyl-ether as an automotive fuel II, Annex XX *Organized by*: The community of Växjö (Sweden), 17-18 January 2001
- Deployment Strategies, Annex XXI Workshop to discuss advanced vehicle programmes in Japan and the progress of Annex XXI Organized by: LEVO and NEDO in Kyoto, Japan, 6-7 June 2001

- IEA Information Centres Meeting *Organized by*: IEA, IEA HQ in Paris, 3 May 2002
- Deployment Strategies, Annex XXI Workshop to discuss 'Evaluation as a key to learning lessons/Defining goals of government promotion' and the progress of Annex XXI *Organized by*: Muntwyler in Vancouver, Canada, 10-11 June 2002
- Clean City Vehicles Workshop on "Clean City Vehicles with a special focus on Developing Countries" *Organized by*: T Månsson, EnEN, IEA HQ in Paris, 24-26 September 2002
- Clean City Vehicles Working meeting Organized by: T Månsson, EnEN, IEA HQ in Paris, 9 December 2002

Appendix 3

LIST OF REPORTS

(Status February 2006)

Annual Reports

- IEA Alternative Motor Fuels. Annual Report 1994, NUTEK, B 1995:5 (ISBN 91-7318-2885)
- IEA Alternative Motor Fuels. Annual Report 1995, NUTEK, B 1996:9 (ISBN 91-7318-3008)
- IEA Alternative Motor Fuels. Annual Report 1996, NUTEK, B 1997:6 (ISBN 91-7318-3083-SE)
- IEA Alternative Motor Fuels. Annual Report 1997, STEM, EB 4:1998 (ISBN 91-89184-03-3)
- IEA Advanced Motor Fuels. Annual Report 1998, STEM, EB 2:1999 (ISBN 91-89184-12-2)
- IEA Advanced Motor Fuels. Annual Report 1999, STEM, EB 1:2000 (ISBN 91-89184-16-5)
- IEA Advanced Motor Fuels. Annual Report 2000, STEM, EB 1:2001 (ISBN 91-89184-26-2)
- IEA Advanced Motor Fuels. Annual Report 2001, STEM, EB 2:2002 (ISBN 91-89184-28-9)
- IEA Advanced Motor Fuels. Annual Report 2002, STEM, ET 7:2003 (ISBN 91-89184-28-9)
- IEA Advanced Motor Fuels. Annual Report 2003, STEM, ET 1:2004
- IEA Advanced Motor Fuels. Annual Report 2004 (see www.iea-amf.vtt.fi)

<u>Annex I</u> Alcohols and Alcohol Blends as Motor Fuels

Operating Agent: SDAB (S)

Results were reported in an IEA/STU publication "Alcohols and Alcohol blends as Motor Fuels". This report was printed in 2 000 copies for the participants. *Publicly available through SDAB*.

<u>Annex II</u> Technology Information Exchange on Alternative Motor Fuels

Operating Agent: SDAB (S)

Phase 1:

Results were reported in a series of "TRENDS". Available only for Participating IEA-countries through SDAB.

- No 86:1 "(Alcohol Fuels in) Sweden"
- No 87:2 "USA Policy"
- No 87:3 "Europe Environment"
- No 88:1 "Utilisation of Alcohol Fuels" (State-of-the-art report)
- No 88:2 "New Publications"
- No 88:3 "Fuel Alcohol Formulations"
- No 88:4 "Alcohol Fuels in Japan"

Phase 2:

Results were reported in a series of "TRENDS". Available only for participating IEA-countries through SDAB.

- No 88:5 "Diesel Exhausts. Environmental and Health Effect"
- No 89:1 "U.S. Study on Flexible & alternative Motor Fuels"
- No 89:2 "Catalysts and filters on Diesel Engines"
- No 89:3 "Carbon dioxide"
- No 89:4 "Clean Motor Fuels in the U.S."
- No 90:1 "California Clean Air"
- No 90:2 "Reformulated Gasoline"
- No 91:1 "Unregulated Emissions"
- No 91:2 "Alcohol Vehicle Emissions"
- No 91:3 "Vehicle Emissions and Cancer Risks"
- No 91:4 "Catalytic Treatment of Emissions"
- No 92:1 "Future Electric Vehicles"
- No 92:2 "Automotive Emissions Test Systems"
- No 92:3 "Trends in Canada"

<u>Annex III</u> Alcohol Diesel Field Trials

Operating Agent: Sypher (CDN)

The following output has been submitted. Available only for Participants in the Annex.

- "IEAMAIN" data collection system, Computer software, user guide and up-dates
- On-line methanol fuels database and access facilities
- Report (Nov. 1987), "Catalytic Converters for Emissions Control on Methanol Engines - Current Research and Development"
- Report (May, 1988), "Comparative Review of World-wide Emissions Legislation & Trends in Correlating Methanol Emissions Data
- Report (May, 1988), "Annex III field Trials, Data Collection Status
- Report (Oct, 1988), "Progress Report on Annex III
- Report (Nov, 1988), "Comparative Review of World-wide Emissions Legislation & Trends in Correlating Methanol Emissions Data", revised
- Report (May, 1989), "Diesel Exhaust Emissions Legislation and Alcohol Fuelled Engines"
- Report (Oct, 1989), "Alcohol Fuels for Heavy Duty Engines A survey of Current Status"
- Report (Oct, 1989), "Diesel Exhaust Emissions Legislation and Alcohol Fuelled Engines", revised
- Report (June, 1990), "Alcohol Fuels for Heavy Duty Engines A survey of Current Status", revised
- Final Report, June 1992

Annex IV

Production of Alcohols and other Oxygenates from Fossil Fuels and Renewables

Operating Agent: Natural Resources Canada (CDN)

Phase 1

The results have presented in a final report, which was printed in 1990. Available to all IEA countries through Natural Resources Canada.

The contents are:

- Methanol production from coal, natural gas and biomass
- Production of methanol and higher alcohols
- Transportation of methanol and other oxygenates
- Ethanol production by fermentation
- Culture of fermentation precursors
- MTBE production
- Biomass liquefaction

In addition, the OA developed a series of computer models and databases.

Phase 2

Available only for participating IEA-countries through Natural Resources Canada.

- "Natural Gas Supply, Demand, and Price"

- "Economic Comparisons of LNG, Methanol and Synthetic Distillates
- "A Comparison of the Production of Methanol and Ethanol from Biomass"
- "Greenhouse Gas (and other) Emissions from Methanol and Ethanol Production Processes"

A final report "Production of Alcohols and Oxygenates from Fossil Fuels and Renewables" was published in 1995. *Publicly available through Natural Resources Canada*.

<u>Annex V</u> Performance Evaluation of Alternative Fuel/Engine Concepts

Operating Agent: VTT Processes (FIN)

Phase 1

Available only for Participants of the Annex through VTT.

- Current status of Phase 1, "Engine tests", 1992

- Cold-start and Cold Start Emissions of alcohol fuelled Light-Duty engines, *A literature study*, 1992

Phase 2

Available only for Participants of the Annex through VTT.

- Final report of Phase 2, also including the work of Phase 1: "Performance Evaluation of Alternative Fuel/Engine Concepts", 1995

A final public report "Performance Evaluation of Alternative Fuel/Engine Concepts 1990 - 1995" including an addendum on diesel vehicles was published in 1996. *Publicly available through VTT*.

- Nylund, N.-O. & Lappi, M. Evaluating Alternative Fuels for Light-Duty Applications. Presented at: International Fall Fuels & Lubricants Meeting, October 1997, Tulsa. Society of Automotive Engineers, 1997. 18.p. (SAE Paper 972974).

<u>Annex VI</u> State-of-the-art Report on Natural Gas as a Motor Fuel

Operating Agent:	Sypher (CDN).
Assistant:	SDAB (S)

The final report, "Methane as Motor Fuel" (May 1992), was printed in book form. *Publicly available*.

The objective of this study was to provide the International Energy Agency with a "state-ofthe-art" report regarding the current and potential future use of methane as a fuel for motor vehicles. In support of this overall objective, the study addressed the following topics:

- World-wide reserves and availability of natural gas; gas extraction, processing and distribution systems; potential supplies of biogas, adaptability of current situation to the transportation industry
- Current technologies used for operating vehicles on impressed and liquefied natural gas, and future trends in engine and vehicle development
- The economic and environmental consequences of expanding the use of methane as a vehicle fuel, and
- Technical and institutional barriers, which could act against the expansion of natural gas in the road transportation sector

The report provides conclusions regarding the current status of methane as a vehicle fuel, and recommendations for maximising the benefits of methane as a vehicle fuel, and expanding its use on a worldwide basis.

Annex VII

Comparison of Relative Environmental Impacts of Alternative and Conventional Fuels

Operating Agent:	ORNL (USA)
Assistant:	Phase 1: SDAB (S). Phase 2: Innas (NL)

The final report "Comparison of Relative Environmental Impacts of Alternative and Conventional Motor Fuels" was printed in book form 1995. *Publicly available through ORNL/DOE.*

<u>Annex VIII</u> Heavy-Duty Vehicles Using Alternative Fuels

Operating Agent: VITO (B)

A final report "Heavy-duty Vehicles on Alternative Fuels" and a report "Workshop on Demonstrations with Heavy-Duty Vehicles Running on AMFs - Report of the Workshop" have been distributed to the Executive Committee. *Further distribution has not yet been decided upon.*

<u>Annex IX</u> The Automotive Fuels Information Service (AFIS)

Operating Agent:	Innas (NL).
Assistant:	Atrax (S)

Five volumes have been published. They are publicly available through Innas.

- 1. Raw Materials and Conversion (Dec 1996)
- 2. Distribution and Use (Dec 1996)
- 3. Comparison and Selection (Jan 1998)
- 4. Innovations or Illusions (Jan 1999)
- 5. Mobile Machinery: Sector analysis (May 1999)

<u>Annex X</u> Characterisation of New Fuel Qualities

Operating Agent: VTT Processes (FIN)

A final restricted report "Characterisation of New Fuel Qualities" was published and distributed to the Participants of the Annex in 1997.

- Nylund, N-O. & Aakko, P., Characterization of new fuel qualities. Presented at: State of Alternative Fuel Technologies 2000. Warrendale: Society of Automotive Engineers, 2000. 10 p. (SAE Paper 2000-01-2009).

Annex XI

Forecasting and Planning Tools for Alternative Fuels and Related Infrastructure

Operating Agent: Sypher (USA)

A detailed progress report has been provided to the Participants of the Annex.

Annex XII

Size and Compositional Analysis of Particulate Emissions from Alternative-fuelled Vehicles

Operating Agent: ETSU (UK)

Interim report "Size and Compositional Analysis of Particulate Emissions from Alternative-fuelled Vehicles". *Available only for Participants of the Annex through ETSU.*

<u>Annex XIII</u> Emission Performance of Selected Biodiesel Fuels

Operating Agent:	VTT Processes (FIN).
Assistant:	ORNL (USA)

Two final reports, which are available through ORNL and VTT.

- Aakko, P., Westerholm, M., Nylund, N.-O., Moisio, M., Marjamäki, M., Mäkelä, T., Hillamo, R. IEA/AMF Annex XIII: Emission Performance of Selected Biodiesel Fuels
 VTT's Contribution. 2000. VTT report ENE5/33/2000.
- Storey, J., Irick, D., Lappi, M., McGill, R. IEA/AMF Annex XIII: Emission performance for selected biodiesel fuels - ORNL's contribution. 2001. Oak Ridge National Laboratory. Research Report

Two publications, which are available through FISITA and SAE Organisation.

- Aakko, P., Nylund, N.-O., Westerholm, M., Marjamäki, M., Moisio, M., Hillamo, R. and Mäkelä, T. The emissions from heavy-duty engine with and without aftertreatment using selected biofuels. 29th FISITA World Automotive Congress. Helsinki, FI, 2 7 June 2002.
- McGill, R., Storey, J., Wagner, R., Irick, D., Aakko, P., Westerholm, M., Nylund, N.-O. and Lappi, M. Emission performance of selected biodiesel fuels. JSAE/SAE International Spring Fuels & Lubricants Meeting, Yokohama, 19 - 22 May 2003. SAE Technical Paper 2003-01-1866.

Annex XIV

Operating A	Agent: TNO (NL)	
<i>Task 1:</i> Title Number	: <i>End-Report of Annex XIV of the IA/</i> <i>an Automotive Fuel''</i> : 00.OR.VM.065.1/AvD	AMF of IEA: "DME as Date: August 2000
<i>Task 2:</i> Title Number	: <i>Toxicity aspects of Dimethylether in</i> <i>automotive fuels currently in use</i> : TNO-MEP-R99/015	<i>comparison with</i> Date: January 1998
Title	: Proposal for safety provisions for DA their installation in vehicles : 98.OR.VM.051.1/JV	, i i i i i i i i i i i i i i i i i i i
Title	: <i>Failure mode and effect analysis DM</i> <i>systems</i> : TNO-MEP-R98/449	IE vehicle storage tank
Number Title	: Conversion of IPG distribution guide distribution guidelines	
Number <i>Task 3:</i> Title Number	: TNO-MEP-R99/050 : <i>Dimethylether as an Automotive fuel</i> : BE 0472 (AVL)	Date: February 1999 <i>Annex XIV</i> Date: March 1999
<i>Task 4:</i> Title Number	: DME from Biomass : (Atrax)	Date: February 1999
<i>Task 5:</i> Title Number	: <i>Environmental effects of DME comp fuels</i> : (Innas)	<i>pared to other automotive</i> Date: June 1999
Task 6: Title Number	: (Innas) : <i>Automotive DME distribution infras</i> : (Innas)	

Investigation into the Feasibility of Dimethyl Ether as a Fuel in Diesel Engines

<i>Task 7:</i> Title	: Workshop Dimethylether as a	in automotive fuel
Number	: 97.OR.VM.003.1/RV	Date: January 1997
	97.OR.VM.091.1/RV	Date: December 1997

98.OR.VM.016.1/RV	Date: March 1998
98.OR.VM.065.1/JV	Date: November 1998
99.OR.VM.025.1/JV	Date: May 1999

Title: DME NewsletterNumber: 1 (June 1998), 2 (December 1998) and 3 (June 1999)

Annex XV Implementation Barriers of Alternative Fuels

Operating Agent: Innas (NL)

A final report "Implementation barriers of alternative fuels" was published in February 1999. *Publicly available through Innas.*

<u>Annex XVI</u> Environmental and Economical Aspects of Implementing Biodegradable Lubricants in Vehicle Engines

Operating Agent: DTU (DK)

van Walwijk, M., Hagenau, J., Schramm, J. "Biodegradable Lubricants", IEA Advanced Motor Fuels Agreement – Annex XVI. Report published by Dep. of Energy Engineering on behalf of IEA Advanced Motor Fuels Agreement, December 1999.

Schramm, J. "Biodegradable Lubricants – Phase 2. Diesel Type Vehicles.", IEA Advanced Motor Fuels Agreement – Annex XVI. Report published by Dep. of Energy Engineering on behalf of IEA Advanced Motor Fuels Agreement, December 2002.

<u>Annex XVII</u> Real Impact of New Technologies for Heavy-Duty Vehicles

Operating Agent: Vito (B)

A final restricted report 'Pelkmans L., De Keukeleere D., IEA-AMF, Annex XVII: Real Impact of New technologies for Heavy Duty Vehicles, VITO-report, December 2000' has been distributed to the Participants of the Annex. *Available only for Participants of the Annex through VITO*.

Annex XVIII

Future Greener Diesel Fuels

Operating Agent: Battelle Memorial Institute (USA)

A final report on "Future Greener Diesel Fuels" was completed in April 2002. Available only for Participants of the Annex through Battelle.

<u>Annex XIX</u> New Fuels for New Engines

Operating Agent: Innas (NL)

A final report has been published in January 2001 as volume 6 in the Automotive Fuels Survey, and is titled "Fuels for HCCI Engines". *Publicly available through Innas.*

<u>Annex XX</u> DME as Automotive Fuel II

Operating Agent: TNO (NL)

- TNO report: "The effect of DME on wear of fuel pump parts", December 2000
- TNO report: End report of Annex XX of the IEA/AMF: "DME as an Automotive Fuel II, Part 1", November 2001
- DTU report: End report of Annex XX of the IEA/AMF: "DME as an Automotive Fuel II, Part 2". November 2001

Available only for Participants of the Annex through TNO.

<u>Annex XXI</u> Deployment Strategies

Operating Agent: Innas (NL)

A final report "Deployment strategies for hybrid, electric and alternative fuel vehicles" has been published on CD-rom in December 2002. *Publicly available through Innas. Will soon be downloadable from <u>www.ieahev.org</u>.*

Annex XXII

Particle Emissions at Moderate and Cold Temperature Using Different Fuels

Operating Agent: VTT Processes (FIN)

Three interim reports and one final report were distributed to the Participants of the Annex. *They are available only for Participants of the Annex through VTT.*

- Aakko, P. The results with the medium-duty engine. The 1st Interim report, May 2001. Restricted.
- Aakko, P. The results with two diesel cars. The 2nd Interim report, October 2001. Restricted.
- Aakko, P. The results with stoichiometric gasoline car and CNG car. The 3rd Interim report, April 2002. Restricted.
- Aakko, P. and Nylund, N.-O. IEA/AMF Annex XXII: Particle emissions at moderate and cold temperatures using different fuels. VTT report PRO3/P5057/03. Restricted.

The following publications are publicly available through SAE and VTT.

- Aakko, P. and Nylund, N.-O. Particle emissions at moderate and cold temperatures using different fuels. SAE Technical Paper 2003-01-3285
- Paper for Windsor Workshop, June 2004 (Windsor Workshop in 2003 was cancelled)

Annex XXIV Information Exchange IEA AMF/AFIS

Operating Agent: Innas (NL)

Three newsletters "IEA AMF/AFIS Fuels Update" per operating year.

Publicly available through Innas, the ExCo members and the AMF Secretary. Can be downloaded from <u>www.innas.com/fuel news</u>.

<u>Annex XXV</u> Fuel Effects on Emissions from Non-Road Engines

Operating Agent: VTT Processes (FIN)

The complete final report is for the participants only and available through VTT. A public version of the final report can be downloaded on IEA-AMF web pages (http://www.vtt.fi/virtual/amf/annex_xxv/annexxxv.html).

 Murtonen, T. Fuel Effects On Emissions From Non-Road Engines, Iterim Report, October 2002 Murtonen, T. and Nylund, N.-O. Fuel Effects On Emissions From Non-Road Engines, Final Report, June 2003

Annex XXVI Alcohols and Ethers as Oxygenates in Diesel Fuel

Operating Agent: Befri Konsult (S) & TEC TransEnergy Consulting Ltd (FIN)

A final report "Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practical Experiences" was completed in December 2005. *Available only for Participants of the Annex through TEC TransEnergy Consulting Ltd (FIN).*

Annex XXVII Standardisation of Alternative Motor Fuels

Operating Agent: Atrax Energi AB (S)

A report covering data and information collected during Phase I as well as proposals for future work has been distributed in November 2003.

In October 2004 a report of Phase II concerning co-operation between IEA/AMF and CEN and/or ISO was distributed

Both reports are publicly available through Atrax, the ExCo members and the AMF Secretary. *The reports can also be downloaded from the AMF website ("Downloadable Documents")*

<u>Annex XXX</u> Animal Fat in Biodiesel

Operating Agent: ATFCan (CDN)

The complete final report is pending, and will be provided to the participants of the Biosafety Workshop in Ottawa, Canada on June 21, 2005. Additional details of the final report and how to obtain copies will be available at ATFCan's website April 2005 (please visit www.atfcan.com).

Appendix 4

AMF ExCo Meetings

1984-90	AMF = Alcohols as Motor Fuels
1990-98	AMF = Alternative Motor Fuels
1998-	AMF = Advanced Motor Fuels

		Date	Chairman	Secretary
а	Madrid	80/3	Staffan Ulvönäs, S	Folke Schippel, S
b	Stockholm	80/7		
1.	Ottawa	84/5	Gene Ecklund, US	Folke Schippel, S
2.	Stockholm	84/11		
3.	Dearborn	85/7		
4.	Vancouver	86/2		دد دد
5	Paris	86/10		<u></u>
6.	Tokyo	87/5	<i>.ι</i>	
7.	Milano	87/11	"	<u></u>
8.	Kiruna, S	88/6		Kjell Isaksson, S
9.	Tokyo	88/11	Shinichi Nakayama, J	Folke Schippel, S
	Vancouver	89/6	<i>.ι</i>	CC
	Rome>	89/11	PierPaolo Garibaldi, I	<u></u>
	Los Angeles	90/6	"	<u>.</u> .
13.	Stockholm	90/11	"	<i></i>
14.	Espoo/Helsinki	91/8	cc	"
15.	Kyoto	92/6	cc	"
16.	The Hague	93/4	Bernie James, CDN	Kerstin Larsson, S
17.	Antwerpen	94/2	<u>دد</u>	Irene Kolare, S
18.	Toronto	94/10	<u></u>	"
	Saltsjöbaden, S	95/9	<u></u>	Lars Vallander, S
20.	Oxford	96/6	<u></u>	۲۵
21.	Charleston	97/3	Ben van Spanje, NL	Claës Pilo, S
22.	Rovaniemi, FIN	98/1	cc	۲۵
23.	Tokyo	98/10	cc	۲۵
24.	Espoo/Helsinki	99/6	Nils-Olof Nylund, FIN	۲۲
25.	Toronto	00/6	دد	"
26.	Copenhagen	01/5	Arie Brouwer, NL	"
27.	Milano	02/4	Nils-Olof Nylund, FIN	"
28	Paris	03/3		"
29	Linköping	04/1	Steve Goguen, USA	<i>دد</i>
30	Sao Paulo	04/10	"	>>
31	Prague	05/11	"	<i>دد</i>

Executive Committee on Advanced Motor Fuels

(Status February 2006)

A. Delegates and Alternates

Canada	Natural Re CANMET 580 Booth Ottawa, Or Phone:	Beregszaszy sources Canada Energy Technology Centre Street, 13th floor ntario K1A OE4, Canada +1 613 996 8557 +1 613 996 9416 aberegsz@nrcan.gc.ca	Delegate
	Mr. Nick R. Beck Natural Resources Canada CANMET Energy Technology Centre 580 Booth Street, 13th floor Ottawa, Ontario K1A OE4, Canada Phone: +1 613 996 6022 Fax: +1 613 996 9416 Mail: <u>nick.beck@nrcan.gc.ca</u>		Alternate
Denmark	Technical Bldg 403 DK-2800 I Denmark Phone: Fax:	er Schramm University of Denmark (DTU) Lyngby +45 4525 4179 +45 4593 0663 js@mek.dtu.dk	Delegate
	Danish End Amaliegad DK-1256 (Denmark Phone:	Copenhagen K +45 3392 7588 +45 3311 4743	Alternate

Finland	d Dr. Nils-Olof Nylund Vice of VTT Technical Research Centre of Finland P.O. Box 1601				
	FI - 02044				
	Phone : +358 400 703 715 or				
		+358 9 2517 2360			
	Fax:	+358 20 722 7048 or			
		+358 9 2517 2361			
	Mail:	nils-olof.nylund@vtt.fi			
	Ms. Maria	tta Aarniala	Alternate		
	Ms. Marjatta Aarniala Finnish Funding Agency for Technology and Innovation (TEKES)				
	P.O. Box 6				
	FI – 00101	Helsinki			
	Phone:	+358 10 605 5736			
		+358 50 557 7875			
		+358 10 605 5905			
	Mail:	<u>marjatta.aarniala@tekes.fi</u>			
France	Mr. Patric	k Coroller	Delegate		
	ADEME				
		de Lucioles			
	F-06560 V				
		+33 4 9395 7932			
		+33 4 9395 7986			
	Mail:	patrick.coroller@ademe.fr			
	M. Jean-Fr	rançois Gruson	Alternate		
	Institut Français du Pétrole (IFP)				
	BP 311				
	F-92508 Rueil-Malmaison Cedex				
	Phone: Fax:	+33 1 4752 6920 +33 1 4752 7014			
	Mail:	<u>j-francois.gruson@ifp.fr</u>			
Italy	Dr. Fulvio	Delegate			
	Agip Petro				
	Via F. Maritano 26				
		an Donato Milanese (Mi)			
	Phone:	+39 02 5205 6421			
	Fax: Mail:	+39 02 5205 6333	niit		
	Iviall.	fulvio.giavazzi@enitecnologie.en	<u>111.11</u>		

Alternate

Dr. Felice Corcione Istituto Motori (IM) Viale G. Maraconi 8 I-80125 Napoli Phone: +39 81 717 7130 Fax: +39 81 239 6097 Mail: <u>f.corcione@motori.im.cnr.it</u>

> Vice Chairman Delegate

Japan/NEDO Mr. Shunichi Tokishita General Director New Energy & Industrial Technology Development Organization (NEDO) 1310 Oomiya-Cho Saiwai-Ku Kawasaki-City, Kanagawa, 212-8554, Japan Phone: +81-44-520-5281 Fax: +81-44-520-5283 Mail: tokishitasni@nedo.go.jp

Alternate

Mr. Atsushi Ito New Energy and Industrial Technology Development Organization (NEDO) 1310 Oomiya-Cho Saiwai-Ku Kawasaki-City, Kanagawa, 212-8554, Japan Phone: +81-44-520-5281 Fax: +81-44-520-5283 Mail: <u>itohats@nedo.go.jp</u>

Japan/LEVO Mr. Kazuo Tanigawa Delegate Organization for the Promotion of Low-Emission Vehicles (LEVO) YPC Building 3F, 2-14-8 Yotsuya, Shinjuku-ku Tokyo, 160-0004, Japan Phone: +81 3 3359 8461 Fax: +81 3 3353 5439 Mail: <u>k-tanigawa@levo.or.jp</u>

> Mr. Yutaka Takada Alternate Organization for the Promotion of Low-Emission Vehicles (LEVO) YPC Building 3F, 2-14-8 Yotsuya, Shinjuku-ku Tokyo, 160-0004, Japan Phone: +81 3 3359 9008 Fax: +81 3 3353 5439 Mail: y-takada@levo.or.jp

Spain	IDAE Madera, 8 ES-28004 I Phone: Fax:	A López-López Madrid +34 91 456 4994 +34 91 523 0414 carlopez@idae.es	Delegate
	IDAE Madera, 8 ES-28004 I Phone: Fax:	Garcia Barquero Madrid +34 91 456 5032 +34 91 523 0414 cgbarquero@idae.es	Alternate
Sweden	Mrs. Alice Kempe Swedish Energy Agency (STEM) Box 310 SE - 631 04 Eskilstuna Phone: +46 16 544 2092 Fax: +46 16 544 2261 Mail: <u>alice.kempe@stem.se</u>		Delegate
	Box 310 SE - 631 0 Phone:	allander nergy Agency (STEM) 4 Eskilstuna +46 16 544 2088 +46 16 544 2261 <u>lars.vallander@stem.se</u>	Alternate
Switzerland	Lab. for Ex Gwerdtstra CH-2560 N Switzerlan Phone:	of Applied Sciences Bern khaust Emissions Control asse 5 Nidau	Delegate

Alternate

Dr. Joerg Loepfe **SAFOSO** Bremgartenstrasse 109A CH-3012 Bern Switzerland Phone: +41 31 631 2937 +41 31 631 2932 Fax: Mail: joerg.loepfe@bluewin.ch

UK

Mr. Chris Parkin Department for Transport (DfT) Zone 2/15, Great Minster House 76 Marsham Street UK-London SW1P 4DR Phone: +44 20 7944 2958 Fax: +44 20 7944 2605 Mail: chris.parkin@dft.gsi.gov.uk

Alternate

Chairman

Delegate

Delegate

USA

_

Mr. Steve Goguen US Department of Energy (DOE) Forrestal Bldg, MS EE-33 1000 Independence Avenue, S.W. Washington, D.C. 20585, USA Phone: +1 202 586 8044 Fax: +1 202 586 1600 Mail: stephen.goguen@ee.doe.gov

Alternate

Mr. Kevin Stork Freedom CAR & Vehicle Technologies Program Office of Energy Efficiency and Renewable Energy US Department of Energy (DOE) Forrestal Bldg, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585, USA Phone: +1 202 586 8306 Fax: +1 202 586 2476 Mail : kevin.stork@ee.doe.gov

B. Representatives of Operating Agents

Annex XXVIII Ms. Päivi Aakko

TEC TransEnergy Consulting Ltd Teknikantie 14 FI – 02150 Espoo Phone: +358 40 5055 750 or +358 9 2517 2360 Fax: +358 9 2517 2361 E-mail: paivi.aakko@teconsulting.fi

 Annex XXIX
 Dr. Nils-Olof Nylund

 VTT Technical Research Centre of Finland

 P.O. Box 1601

 FI – 02044 VTT

 Phone:
 +358 400 703 715 or

 +358 9 2517 2360

 Fax:
 +358 20 722 7048 or

 +358 9 2517 2361

 E-mail:
 nils-olof.nylund@vtt.fi

North American Liaison Officer Dr. Ralph McGill Sentech, Inc. 700 S. Illinois Avenue Suite A201 Oak Ridge, TN 37830 Mobile: 865-806-2921 (please call this number first) Tel. 865-483-0359 ext 102 Fax. 865-483-0439 mcgillrn@ornl.gov

Annex XXXMr. Rodney Semotiuk
ATF Advanced Technologies & Fuels Canada Inc. (ATFCan)
80 Aberdeen Street
Suite 400
Ottawa, ON K1S 5R5
Canada
Phone: +1 613 231 3298
Fax: +1 613 231 4353
E-mail: semotiuk@atfcan.com

Annex XXXI &Mr. Björn RehnlundAnnex XXXIIAtrax Energi AB
Allévägen 38
SE-178 52 Ekerö
Sweden
Phone:Phone:+46 8 564 000 52 or
+46 73 384 24 46E-mail:bjorn.rehnlund@atrax.se

Annex XXXIIIProf. Jan Czerwinski
University of Applied Sciences Bern
Lab. for Exhaust Emissions Control
Gwerdtstrasse 5
CH-2560 Nidau
Switzerland
Phone: +41 32 331 6426
Fax: +41 32 331 5934
Mail: jan.czerwinski@hti.bfh.ch or
csj1@hti.bfh.ch

C. Secretariat

IEA Paris Mr. Jeppe Bjerg Energy Technology Policy Division International Energy Agency (IEA) 9, rue de la Fédération F-75739 Paris Cedex 15 France Phone: +33 1 4057 6677 Fax: +33 1 4057 6759 E-mail: jeppe.bjerg@jea.org

IEA/AMF Secretariat

Lic.Eng. Claës Pilo SDAB Transport & Environment Karlavägen 93 SE-115 22 Stockholm Phone: +46 8 15 11 90 Fax: +46 8 15 11 91 E-mail: <u>pilo.sdab@swipnet.se</u>